ORIGINAL PAPER

Forest management economics based on forest typology

Václav Kupčák*, Karel Pulkrab, Roman Sloup, Anna Beníčková

 $Czech \ University \ of \ Life \ Sciences \ Prague, \ Faculty \ of \ Forestry \ and \ Wood \ Sciences, \ Kam'yck \ i \ 129, \ CZ-16521 \ Praha \ 6-Suchdol, \ Czech \ Republic \ i \ Nam'ych \ Sciences, \ Scien$

Abstract

In forest management, natural conditions have long been systemized by groups of forest habitat types (GFHT). Based on them, appropriate economic measures can be taken and economic efficiency of silviculture calculated. Management intensity, the term related only to timber production in the past, has recently been defined more broadly within the sustainable, close-to-nature forest management concept. It includes economic-ecological and efficient management, and reflects potential production as well as ecological effects of forest stands. Nature and natural development are preferred where artificial interventions are unnecessary (Plíva 2000). This concept uses a specific GFHT as the elementary unit as it allows to exactly identify ecological and economic potential, management measures, quantification and monetary expression of elementary components of economic efficiency. Such optimization of management measures and their economic projections analysis can be considered a comprehensive biological-ecological-economic analysis.

Keywords: Groups of forest habitat types; management intensity; ecological potential; economic potential

Editor: Martin Moravčík

1. Introduction

Sustainable and site-befitting forest management means "the stewardship and use of forests and forest lands in a way, and at a rate, that maintains their biodiversity, productivity, regeneration capacity, vitality and their potential to fulfil, now and in the future, relevant ecological, economic and social functions that do not cause damage to other ecosystems" (Second Ministerial Conference, Helsinki 1993, Anonymus 2003).

Analyses of forestry production conditions distinguish among different natural conditions, conditions of workplaces, technologies, management, human factors etc. Natural conditions express general production features of forests and site characteristic that – to a large extent – go along with forest typological classification. Differences in natural conditions are reflected in different tree species, quality and age structures of forest stands and, consequently, in different assortment structures and allowable total cuts (Kupčák 2006).

Natural conditions of forests in the Czech Republic (CR) vary considerably. In forest typology, the elementary unit of growth conditions differentiation is the forest habitat type (FHT). The contemporary approach to FHT is basically identical with Zlatník's classical definition (1956): "Forest habitat type is an aggregate of natural geobiocoenosis and all geobiocoenoses originating from it, from the viewpoint of development, and partly geobiocoenoses changed to a certain extent, including development stages."

Forest habitat types associate in groups of forest habitat types (GFHT) in accordance with their ecological relation expressed by important economic features of the site. At present, these typological units are subject to Regulation No. 83/1996 (Ministry of Agriculture) on regional plans of forest development and management units. Moreover, FHT serves as a criterion for forest land prices (see Regulation No. 3/2008 to Act No. 151/1997 on property evaluation¹).

The GFHT approach is based on Plíva (1971, 1980, 1998, 2000) who elaborated a methodology for GFHT utilization for forest management differentiation in accordance with the concept of sustainability and efficiency. The author draws on his previous works and adjusts the data to the concept of sustainable management (SM), particularizes them for selected GFHT and adds more information to support a multipurpose utilization. He associates GFHT by intensity and targets of management.

According to Plíva (2000), "management intensity" in the concept of SM and close-to-nature management acquires broader sense than in the original approach supporting timber production and rationalisation and intensification (or, maybe, together with labour and means investment). Plíva supports economic-ecological and, last but not least, efficient management. He reflects not only the value of potential production but also ecological effects of forest stands which affect – and limit – the management intensity. His approach leaves more up to the nature and natural development where artificial intervention is unnecessary.

The stands are actively influencing their surroundings, and the effect is expressed by their ecological functions, i.e. positive effects of forest on its environs. Their overall influence in GFHT is, therefore, ecological potential (EP), and simultaneously, production potential (PP) of a GFHT is determined by the production function (value of production). Quantitative markers EP and PP influence manage-

¹ GFHT are units of the typological system associating forest habitat types by its ecological relation expressed by important economic features of the site (Appendix No. 24 to Regulation No. 3/2008).

ment intensity (MI). Both potentials influence MI reversely as well (increasing ecological function makes MI decrease down to protection forest intensity; reversely in case of production function), therefore their comparison in GFHT determines appropriate MI. In fact, both potentials are of comparable extent as they comprise the full scale of potential alternatives of all GFHT (Pulkrab et al. 2009).

The article investigates management measures and methods of GFHT-based economic features calculations. These issues represent the introductory part of the National Agency for Agricultural Research project called "Differentiation of the Management Intensities and Methods to Ensure Forest Biodiversity and Economic Sustainability of Forestry" (hereinafter referred to as the project). One of the project's principle objectives is to define appropriate management measures of silviculture and harvest, and to calculate economic efficiency of forestry in an easy-to-use system based on typology.

2. Methods

The methodological approach of the project is based on the essential structure of GFHT – in relation to ecological and production (timber production) forest function.

Forest types as elementary units of differentiation of forest growth conditions (growth of trees, their production and silviculture) are grouped by their ecological (soil and climatic) affinity expressed by phytocoenosis (association) or manifest features (characteristics) of the site into GFHT. Inductively created GFHT, systemized into an ecological (edaphoclimatic) network constituted a solid framework with a feedback and a deductive procedure expressed by the following definition (Amendment No. 4 to Regulation No. 83/1996): "GFHT are determined by forest altitudinal zone (FAZ) and edaphic category." The definition is tempting to schematically fill in the network on one hand, but on the other, it lets us adjust the system more clearly to facilitate practical application. As mentioned above, the ecological forest functions (active influence of stands on forest environs) are generally called ecological potential (EP) and the production function, expressed by the value of potential production, is called production potential (PP).

We distinguish EP by the importance of cardinal functions, i.e.:

- 1. Infiltration infiltration of precipitation into the soil, its retention, retardation and accumulation; loss control by interception.
- 2. Erosion control (slopes of 40% and steeper; or milder in case of erosion risk) – prevention of surface outflow and soil erosion; facilitation of high retention and infiltration.
- 3. Suction forest stands absorb water and drain superfluous water to let the soil accumulate precipitation and slow down the drainage.
- 4. Precipitation supporting (climatic) function (complementary function 1, 2, 3 in the 7th and 8th FAZ) – zones of frequent mists in mountain zones improving water balance by supporting precipitation.

Other ecological functions of stands occurring only in some localities (parts) of GFHT:

- water protecting lanes of shore stands (mostly within L and U categories)
- mesoclimatic protection from negative mesoclimatic effects, especially in frost hollows,
- other soil protection functions (deflation, landslides, avalanches, banks controlling functions) considered when evaluating the erosion control function,
- (forest) protection self-preservation function of forest ecosystems in extreme conditions limiting the forest existence.

2.1. Economic parameters of production potential evaluation

The calculation is based on the following prerequisites:

- potentional forest production yields calculation was based on yield tables (Černý et al. 1996);
- sorting was based on assortment tables for Norway spruce, Scots pine, beech and oak stands in "N" quality – healthy, undamaged, straight stems (Pařez 1987a, b);
- considering main collections in each girth class (6+ to 1), currently traded in CR and evaluated in market prices published by the Czech Statistical Office for year 2013;
- 4) the elementary space unit for evaluation was GFHT;
- 5) the principal synthetic indicator of evaluation effect was the gross yield of forest production (GYFP);
- 6) the calculation of direct silviculture and harvest operation costs is based on performance standards (Nouza, Nouzová 2003) considering the following: adding a 15% mean flat surcharge to the basic norm; accepting the flat wage rate of CZK 65.00/standard hour in silvicultural operations and CZK 80.00/standard hour in harvesting operations (the estimated republic's average the value of which might vary in different regions); adding the flat rate of social and health insurance (34% to labour costs); adding flat substitutes (39% to labour costs).

Calculations cover also reasonable indirect costs of 35% to direct costs; roads and slope roads maintenance are not included in the costs.

Five grades of MI are defined by comparison of PP with the ecological functions importance grade of an ecosystem (EP), and, within the five grades, several types of target management are set (in accordance with the character of natural conditions and the main target tree species). These two broadly set units serve to make general principles clear, but do not substitute GFHT nor management units. MI by GFHT is presented in the ecological network of the typological system (where PP and EP grades are also mentioned) and is scaled A–E, see Table 1.

Table 1. Differentiation of management intensity.

	Management Intensity	Relation $PP \leftrightarrow EP$
А	Highly intensive management	PP highly exceeds EP
В	Intensive management	PP (considerably) exceeds EP
С	Standard management	PP mildly exceeds EP
D	Limited management	EP exceeds PP
Е	Protection forests management	EP highly exceeds PP

Gross yield of forest production is presented in Table 2.

Table 2. Th	e gross	yield of f	orest pr	oductio	n value	by targ	et mané	gement	(thous.	CZK).															
											Group of	forest habi	itat types												
	đ	ransitional		ĉ	extreme			exposed			acid			nutr	'itious			gleyed			water	logged		alluvia	
	Μ	С	Х	Ζ	Υ	ſ	Α	ц	N	Μ	К	Π	S	В	Η	D	۸ ا	0	0	C'	Е	GR		n ,	_
9 dwarf pine																									
8				SN	SN		SN	SN	SN	SN	SN		SN				SN			2	SN	N SN	<i>v</i> .		
spruce				0.8	1.2		2.6	3.1	3.1	2.3	2.7		2.7				3.1		5.2) % (7)	. 4	.6 2.			
7				SN	NS			NS	NS	NS	NS		NS N	VS			NS N	IS N	N S	S N	N SN	N SN	S		
beech-				1.0	1.2			3.9	2.9	2.2	3.0		3.2 3	3.3			5.1 4	.0 3	.8	1 3	.3 4	.8 3.	3		
spruce																									
9					NS		NS	NS	NS	EB	EB	EB	NS E	3B E	3B E	3B I	EB N	IS N	N S	S	2	N SN	S		
spruce-					1.1		4.3	4.4	3.0	0.6	2.3	1.1	5.1 2	2.5	2.1 2	2.5	2.2 4	.4 3	0.2	7	4	.8 4.	8		
beech							EB 1.3	EB 1.8	EB 0.8	NS 2.2	NS 3.2	NS 3.3	EB 1.9 5	NS 5.8 5	NS 1 5.2 5	SN 6	NS 5.7								
	NS	EB			NS	EB	NS	NS	NS	EB	EB	EB	NS N	VS E	3B E	3B I	EB	IS N	N S	s		N SN	s	SN	s
5	4.5	1.6			0.9	0.6	5.3	4.4	3.2	0.6	1.2	1.2	5.3 5	5.8 2	2.3 2.3	5	2.2 4	.4 3	7 2.	7	5	.4 2.	8	4.9	6
fir-beech	EB						EB	EB	EB		NS	NS	BK	~	NS I	I SN	SN		S	Ь					
	1.6						1.4	1.9	0.9		3.3	3.3	2.3	6	3.0	8.	5.8		2.	0					
	EB	EB			SP		NS	NS	SP	SP	NS	EB	EB E	3B E	3B E	3B I	NS N	IS N	SS	Ь	2	N SN	S		
	1.6	1.1			0.7		4.9	4.6	2.2	0.5	3.3	1.3	1.9 2	2.3 2.2	2.3 2.3	3.5 (5.1 5	.1 3	.6 0.	8	5	.4 5.	1		
4		SP					EB	EB	NS	OA	EB	NS	NS N	NS N	NS I	NS I	EB C	A C	A						
beech		1.5					1.3	1.7	3.4	0.5	1.3	3.3	4.1 5	5.4 5	5.4 (5.1	2.2 4	.1	ŝ						
									EB 1.0) 7	AC 1.4								
	EB	EB			SP	EB	NS	NS	SP	SP	SP	SP	EB E	3B E	3B E	3B 1	NS N	IS			2	SN	A	T NS	s
	1.8	1.3			0.6	0.01	4.3	3.8	1.1	0.2	0.8	0.7	2.1 2	2.3 2.2	2.3 2.3	2.1 (5.0 4	0.			5	0.	2.	4 6.7	7
3		SP					EB	EB	NS	OA	EB	NS	NS NS	NS N	NS I	NS I	EB	В							
oak-beech		0.9					1.2	1.6	3.4	0.3	2.5	3.4	4.0 5	5.4 5	5.5 4	1.6	2.2	2							
									EB 0.9			EB 2.5				- 1	0.4 4 C	8. 8.							
,	OA 2,5	EB		OA V C			OA 04		SP	SP	SP	SP	SP () VC	P V	DA C	A S	P S	4				A ,	
2 haad aal:	1.2	0.0		0.4			0.2			7.0	/.0	9.0 V		· · · · · · · · · · · · · · · · · · ·	0.0		c 7.7			ø			4	0	
DECUIL-DAK		0.8							0.8	0.3	0.7	1.0	1.4												
		SP	OA	OA		OA	OA		SP	SP	SP	SP	SP (<u>) AC</u>) VC) VC	DA C	A S	P S	4			0	A 04	A
1		0.6	0.4	0.4		0.5	0.8		0.6	1.3	0.2	0.7	1.1 1	1.9 1	1.2 1	1.7	2.2 2	.6 1	.0	×			ć,	8 4.4	4
oak		0A 0.5							OA 0.6		OA V 0	0A 0.7	0A عد												
				10	LD LD				0.0	10	+-0		6.7												
0.		Y,		SP	22				SP SP	SP	SP						ν.	، د م	ч , х с				~ `		
pine		c.I		0.3	0.5				0.9	0.7	0.8						7	4	4	7	0	.4 0.	0		
Explanatory notes	: NS – Nor	way spruce, S	P-Scots pi	ine, OA – oa	ık, EB – Eur	opean beed	:h, LA–larc	h, Fl – fir, Al	L-alder.																

3. Results and discussion

Table 3 presents groups of forest habitat types and their representation in CR. The following forest site complexes are among the most frequent GFHT: 5K (*Abieto-Fagetum acidophilum*), 6K (*Piceeto-Fagetum acidophilum*), 3K (*Querceto-Fagetum acidophilum*), 2K (*Fageto-Quercetum acidophilum*), 5S (*Abieto-Fagetum oligo-mesotrophicum*), 5B (*Abieto-Fagetum mesotrophicum*), 3H (*Querceto-Fagetum illimerosum mesotrophicum*) (Kupčák & Pulkrab 2012).

The output of the project and its methodology is identification and quantification of economic parameters of management in relation to management measures. The calculations respect ecological limits implied by the CR typological system and legislation. The analysis considered the recommended tree species representation, the share of soil improving species, rotation period and target management (Norway spruce, Scots pine, oak and beech).

Types of target managements by Plíva (2000) are defined by framework units with the same target management, and the same essential tree species of the target composition which mark the type of the management, set management intensity and the forest management system.

In given natural conditions, the target composition defines the optimal PP when the forest ecosystem keeps stable (ecological stability, or acceptable instability), therefore the related management system is optimal as well. Production of alternative managements systems cannot be higher, but can possibly improve ecological forest functions.

Target managements open the way for setting framework principles in specific MI but their presence also provides ample information on management prerequisites and targets in broader areas.

3.1. Alternatives of target management

The following tables enumerate the ecologically acceptable alternatives of target management (Norway spruce, Scots pine, oak and beech) by GFHT. Tree composition (in %) by GFHT for Norway spruce and Scots pine target management in the ecological network of typological system is shown in Table 4, tree composition for oak and beech target management is presented in Table 5.

It is in accordance with the Czech typological system that in some GFHT, only one target management is acceptable; in most GFHT, though, the owner can choose from two or three alternatives of target management. The following list (based on Tables 4 and 5) shows us areas of acceptable target managements from the total 2,659,832 ha of Czech forests:

- 420,254 ha Norway spruce target management only,
- 1,321,939 ha Norway spruce target management or another, usually beech,
- 154,271 ha Scots pine target management only,
- 37,238 ha Scots pine target management or another, usually oak,
- 170,230 ha oak target management only,
- 308,541 ha oak target management or another, usually Scots pine,
- 79,795 + 10,639 ha beech target management only,

 127,672 ha – beech target management or another, usually Norway spruce.

3.2. Management intensities

Table 6 presents a survey of management intensities in the ecological network of the typological system. Presented data do not reflect the contemporary forest stand state and composition but anticipate the results on the basis of maximum PP of target composition and site characteristics (potential). PP was defined on the basis of gross yield of forest production (GYFP). In the table, alternatives of target managements with maximum production potential, i.e. gross yield of forest production, were opted for. The grade of production potential is provided with each GFHT (top left) based on the value scale (see Table 2); on the bottom left, there is the grade of ecological potential based on cited Plíva's works; in the middle, there is the target management with the highest GYFP in the particular GFHT and it also presents the grade of MI as the difference between ecological and economic potential.

The table shows GFHT with the highest PP: 2L (Fraxineto-Quercetum alluvialis), 3U (Acereto-Fraxinetum vallidosum), 3B (Querceto-Fagetum mesotrophicum), 3H (Querceto-Fagetum illimerosum mesotrophicum), 3V (Querceto-Fagetum fraxinosum humidum), 4B (Fagetum mesotrophicum), 4H (Fagetum illimerosum mesotrophicum), 4D (Fagetum acerosum deluvium), 4V (Fagetum fraxinosum humidum), 5B (Abieto-Fagetum mesotrophicum), 5D (Abieto-Fagetum acerosum deluvium), 5V (Abieto-Fagetum fraxinosum humidum), 5S (Abieto-Fagetum oligo-mesotrophicum), 6B (Piceeto-Fagetum mesotrophicum), 6D (Piceeto-Fagetum acerosum deluvium), 6H (Piceeto-Fagetum illimerosum mesotrophicum), 6V (Piceeto-Fagetum fraxinosum humidum) and 7V (Fageto-Piceetum acerosum humidum). GFHT with the highest EP are the following: 7R (Piceetum turfosum acidophilum), 7Z (Fageto-Piceetum humilis), 8A (Aceri-Piceetum lapidosum), 8F (Piceetum lapidosum mesotrophicum), 8N (Piceetum lapidosum acidophilum), 8R (Piceetum turfosum [montanum]), 8Y (Piceetum saxatile) and 8Z (Sorbeto-Piceetum [humilis]).

Management intensity, originally encompassing only timber production and rationalization and intensification, has adopted a broader sense in the concept of sustainable management. Management intensity is used to define concrete management measures, which can support some of the principles of sustainable management, e.g.:

- diversity of species and its aiming at natural character (lower MI), or, possibly, closer links to target species (higher MI),
- nature-friendly management approach preferring natural processes where artificial intervention is unnecessary,
- e.g. rotation period the higher the intensity, the closer to target assortments; the lower the intensity, the more inherent the ecological aspect; when the ecological functions prevail, the rotation period prolongs, even up to the physical age limits, in extreme cases,
- in Table 6 the comparison was based on the target management alternatives with the highest PP (as apparent from the title of the table).

v	Kunčák	et al /	Iorn	Cas	For I	62	(2016) 80_0	07
v.	пирсак	ei ai. /	Lesn.	cas.	FUL.J	. 02	(2010)	109-2	11

Table 5	. Represe	manon	of groups	soriore	st nabitat	types m	Czech K	epuolic	[/0].						
No.	GFHT	%	MI	No.	GFHT	%	MI	No.	GFHT	%	MI	No.	GFHT	%	MI
1	0X	+	E	44	31	1.7	С	87	5B	2.8	Α	130	40	0.9	В
2	1X	0.1	E	45	4I	0.1	В	88	6B	0.1	А	131	50	1.3	В
3	2X	+	E	46	51	0.6	В	89	7B	+	В	132	60	0.7	В
4	3X	+	E	47	61	0.1	В	90	2W	0.1	С	133	70	0.2	В
5	4X	+	E	48	0N	0.4	D	91	3W	0.3	С	134	0P	0.2	D
6	0Z	+	E	49	1N	+	D	92	4W	0.1	С	135	1P	0.3	С
7	1Z	0.3	E	50	2N	0.1	D	93	5W	+	С	136	2P	0.4	С
8	2Z	0.1	E	51	3N	0.3	D	94	1D	0.2	В	137	4P	1.5	С
9	3Z	+	E	52	4N	0.1	D	95	2D	0.2	В	138	5P	1.0	В
10	4Z	+	E	53	5N	0.7	D	96	3D	0.7	В	139	6P	1.2	B(C)
11	5Z	+	E	54	6N	0.7	D	97	4D	0.7	Α	140	7P	0.2	С
12	6Z	+	Е	55	7N	0.2	D	98	5D	1.1	Α	141	0Q	0.3	D
13	7Z	0.1	Е	56	8N	0.1	D-E	99	6D	0.1	Α	142	1Q	0.2	D
14	8Z	0.3	Е	57	18	0.4	С	100	1A	+	D	143	2Q	0.1	D
15	9Z	0.1	Е	58	28	0.8	С	101	2A	0.2	D	144	4Q	0.5	D
16	0Y	+	D-E	59	38	3.2	В	102	3A	0.5	D	145	5Q	0.2	С
17	3Y	0.1	E	60	4S	1.5	В	103	4A	0.2	D	146	6Q	0.1	С
18	4Y	+	D-E	61	5 S	5.7	Α	104	5A	0.7	С	147	7Q	+	D
19	5Y	0.1	D-E	62	6S	2.1	Α	105	6A	0.3	С	148	8Q	0.1	D
20	6Y	0.2	D-E	63	7S	0.5	С	106	7A	+	D	149	0T	0.1	D-E
21	7Y	+	E	64	8S	0.2	С	107	8A	+	D-E	150	1T	+	D
22	8Y	+	E	65	0C	0.1	D-E	108	1J	0.1	Е	151	3T	+	D
23	0M	0.8	D	66	1C	0.5	D	109	3J	0.2	Е	152	5T	+	D
24	1M	0.6	C	67	2C	0.7	D	110	5J	0.2	D-E	153	7T	0.1	D
25	2M	0.9	D	68	3C	0.2	D	111	1L	1.0	Α	154	8T	+	Е
26	3M	1.1	D	69	4C	0.1	D	112	2L	0.2	Α	155	0G	0.3	С
27	4M	0.1	D	70	5C	+	D	113	3L	0.4	С	156	1G	0.2	D
28	5M	2.2	D	71	3F	0.1	С	114	6L	+	D-E	157	3G	+	С
29	6M	0.4	C	72	4F	0.1	С	115	1U	0.1	Α	158	4G	0.2	С
30	7M	0.1	C	73	5F	0.5	С	116	3U	0.2	В	159	5G	0.2	С
31	8M	0.2	D	74	6F	0.1	С	117	5U	0.2	С	160	6G	0.4	С
32	0K	1.3	C	75	7F	+	D	118	1V	0.2	В	161	7G	0.5	С
33	1K	0.8	C	76	8F	+	D-E	119	2V	0.1	В	162	8G	0.3	D
34	2K	4.0	C	77	1H	0.1	В	120	3V	0.2	Α	163	0R	0.1	Е
35	3K	4.6	C	78	2H	1.1	В	121	4V	0.1	Α	164	3R	+	D
36	4K	1.5	В	79	3H	2.4	Α	122	5V	0.7	Α	165	4R	0.1	С
37	5K	9.7	В	80	4H	0.3	Α	123	6V	0.8	Α	166	5R	0.1	D
38	6K	6.0	C	81	5H	0.9	Α	124	7V	0.1	С	167	6R	0.1	С
39	7K	2.2	C	82	6H	0.1	А	125	8V	+	D	168	7R	0.2	D
40	8K	0.6	C	83	1B	0.7	В	126	00	+	С	169	8R	0.2	Е
41	9K	+	E	84	2B	0.7	В	127	10	0.7	В	170	9R	0.1	Е
42	1I	0.7	C	85	3B	1.7	А	128	20	0.3	В				
43	2I	1.8	C	86	4B	0.7	Α	129	30	1.0	В				

(Source: Plíva 2000) Explanatory notes: No. = number, GFHT = groups of forest habitat types, MI = management intensity.

Table 4. Tree spe	cies share	(in %) by	GFHT t	or Norw	'ay spru	ice and 2	scots pli	le targe	t manag	етелт и	u the ecc	logic ne	twork c	if the tyl	oology sy	stem.							
									0	Froup of for	est habitat t	ypes											
Line	~	extreme			expc	osed			acid			nutn	itious				gleyed		>	/aterglogg	p	a	luvial
faz ¹)/cat ²⁾ >	Z	γ	ſ	A	c	н	Z	W	K	S	В	Η	D	A	Λ	0	Р	ò	г	Ŀ	R	Г	n
9 dumening																							
		00.011				00000	00011	0000			100							00 011	00011	00011	00011		
8	NS 91	NS 90		NS 90		NS 90	NS 90	NS 90	NS 85	zi	S 85				NS 9(_		NS 90	NS 90	NS 90	NS 90		
spruce	EB II	EB 10		EB 10		EB 10	EB 10	EB 10	EB / LA 4 FI 4	4 1	87 FI AL4				EB J(EB IU	EB 10	EB 10	EB 10		
	NS 9(06 SN 0				NS 90	06 SN	NS 85	NS 85	Z	S 85 NS	: 70			NS 85	NS 70		NS 90	NS 90	NS 85	06 SN		
7	EB 1(EB 10				EB 10	EB 10	EB7 FI	EB 7 FI	EI	37 EB	120			EB 7	A EB20		EB 10	EB 10	EB 7	EB 10		
beech-spruce								4AL4	4 AL 4	Ы	4 LA	5			4 FI 4	LA 5				FI 4			
										Al	.4 FI.	5				FI 5				AL4			
		NS 70		NS 70		NS 70	NS 70	NS 70	NS 70	Z	S70 N5	370 NS	70 NS	70	NS 7(NS 70	NS 70	NS 70		NS 85	NS 85		
9		EB 25		EB 20		EB 20	EB 20	EB 20	EB 20	EI	320 EE	120 EB	20 EB	20	EB 2(EB 20	EB 20	EB 20		EB 7	EB 7		
spruce-beech		FI 5		LA5		LA 5	LA 5	LA5	LA5	Ľ	A5 LA	.5 LA.	5 LA.	2	LA 5	LA5	LA5	LA5		FI 4	FI 4		
				FI 5		FI 5	FI 5	FI 5	FI 5	E	5 FI.	5 FI 5	FI 5		FI 5	FI 5	FI 5	FI 5		AL4	AL4		
		NS 70		NS 70		NS 70	NS 70		NS 70	Z	S70 N£	370 NS	70 NS	ZO NS	20 NS 7(NS 70	NS 70	NS 70		NS 85	06 SN		NS 50
		EB 25		EB 20		EB 20	EB 20		EB 20	3	820 EE	3 20 EB	20 EB	20 EB	20 EB 20	EB 20	EB 20	EB 20		EB 7	EB 10		EB 30
5		FI 5		LA 5		LA5	LA 5		LA5	ľ	A5 LA	.5 LA.	5 LA	2 FA	LA5	LA5	LA5	LA5		FI 4			FI 20
fir-beech				FI 5		FI 5	FI 5		FI 5	FI	5 FI	5 FI 5	FI5	FI 5	FI 5	FI 5	FI 5	FI5/ SP 80		AL 4			
																		OA 20					
		SP 95		NS 70	SP 70	NS 70	SP 70	SP 70	NS 70	Z	S 70 NS	370 NS	70 NS	70	NS 7(NS 70	NS 70	SP 80		NS 85	NS 85		
		OA5		EB 20	OA 30	EB 20	OA 30	OA 30	EB 20	E	3 20 EE	20 EB	20 EB.	20	EB 2(EB 20	EB 20	OA 20		EB7	EB 7		
4				LA 5		LA 5	/	,	LA 5	Ľ	A5 LA	.5 LA	5 LA.	2	LA 5	LA5	LA 5			FI 4	FI 4		
beech				FI 5		FI 5	NS 70		FI 5	H	5 FI	5 FI 5	FI 5		FI 5	FI 5	FI 5			AL 4	AL4		
							EB 20 LA 5																
							FI 5																
		SP 95		NS 70	SP 70	NS 70	SP 70	SP 70	SP 70 S	N 02 d	S 70 N5	370 NS	70 NS	70	NS 7(NS 70	NS 70			NS 85			NS 50
		0A 5		EB 20	OA 30	EB 20	0A 30	0A 30	OA C	A 20 Ei	B 20 EE	120 EB	20 EB.	20	EB 2(EB 20	EB 20			EB7			EB 30
				LA 5		LA 5	/		20 L	A5FI L4	A5 LA	.5 LA	5 LA.	5	LA 5	LA 5	LA 5			FI 4			FI 20
3				FI 5		FI 5	NS 70		LA5 5	FI FI	5 H	5 FI5	FI5		FI 5	FI 5	FI 5			AL 4			
oak-beech							EB 20		H5 N	4S 70													
							LA5		ц.	.B 20													
							CIJ			L5													
									SP 70 S	P 70 SF	02.0						SP 70						
2					SP 70		SP 70	SP 70	OA10 C	NA 20 04	A 20						OA 20	SP 80					
beech-oak					OA 30		OA 30	OA 30	LA5 L	A5 L/	15						LA 5	OA 20					
									FI5 F	15 FI	5						FI 5						
								CD 85	SP 70 S	P 70 SI	02 د						SP 70						
1					SP 70		SP 70	DA 10	0A20 C	A20 0.	A 20						OA 20	SP 80					
oak					0A30		0A30	LA5	LA5 L	A5 L/	45 5						LA5	0A 20					
							00.05	00.05	7 C17		0					00.05	C 17	00.05					
0	SP 95	SP 95			SP 95		SP 85 04 10	SP 85	SP 85							SP 85	04 70 04 70	5P 85 0A 10	SP 95	SP 95	SP 95		
pine	0A5	OA5			OA5		LA5	LA5	LA5							LA 5	FI 10	LA5	0A 5	OA 5	OA5		
Explanatory notes: ¹⁾ 1	az = forest alt	itudinal zon	le. ²⁾ cat. =	category.	NS – Nor	wav spruc	e. SP – Sc	ots pine,	.)A – oak,	EB – Eurc	pean beec	h. LA – la	rch. FI – j	fir. AL – a	lder.								

וותרי	horico aitar o					, III 141 5				viugica			c ry poro	Ercur of	21711								
										Group of f	orest habi	tat types											
Line	extreme			expose	p			acid			nutritious					gleyed			Wai	ter logged		alluvial	
faz ¹⁾ /cat. ²⁾	X Z	Υ	ſ	Α	С	ы	N	W	K	Ι	S	В	Н	D	Ň	٥ ٥	• •	°	F	9	Ч	Г	Ŋ
6																							
dwarf pine																							
8																							
spruce																							
7																							
beech-spruce																							
				EB 70		EB 70	EB 80	EB 70	EB 70	EB60	EB 60		EB 60	EB 60		EB 60							
9				OA 10		OA 10	OA 10	OA 10	OA 10	NS	OA 20		OA 20	OA 20		NS 20							
spruce-beech				LA 20		LA 20	LA 10	LA 10	LA 20	20 0A 20	NS 20		NS 20	NS 20	-	0A 20							
			EB 60	EB 70	EB 80	EB 70	EB 80	EB 80	EB 60	EB 60	EB 60	EB 60	EB 60	EB 60	0A70	EB 60							
Ś			NS 20	OA 10	OA 10	OA 10	OA 10	OA 10	NS 20	NS 20	0A 20	0A 20	0A 20	0A 20	EB10	NS 20							
g fir headh			FI 20	LA 20	LA 10	LA 20	LA 10	LA 10	0A 20	0A 20	NS 20	NS 20	NS 20	NS 20	TA	0A 20							
															20								
				EB 80	EB 80	EB 70	EB 80	0A 80	EB 60	EB 60	EB 60	EB 60	EB 60	EB 60	0A70	EB 60 () 06 V(0470					
4				OA 10	0A10	OA 10	OA 10	EB 10	NS 20	NS	OA 20	OA 20	OA 20	OA 20	EB10	NS 20 I	A10 H	.B 10					
heech				LA 10	LA 10	LA 20	LA 10	LA 10	OA 20	20	NS 20	NS 20	NS 20	NS 20	FA	0A 20	Ι	A 20					
										0A 20					50	/ OA 90 LA 10							
			EB 80	EB 80	EB 80		EB 80	OA 80	EB 70	EB 70	EB 60	EB 60	EB 60	EB 60	0A70	EB 60 E	CB 60					AL 60	
			LA 10	OA 10	OA 10		OA 10	EB 10	OA 10	0A10	OA 20	OA 20	0A 20	OA 20	EB10	NS 20	VS 20					NS 20	
oak-heech			FI 10	LA 10	LA 10		LA 10	LA 10	LA 20	LA 20	NS 20	NS 20	NS 20	NS 20	ΓA	0A20 (0A 20 /					EB 20	
															50	/0A90 (LA10 I	A 10						
	OA			09 60	OA 80		OA 80	OA 80	0A 70	EB 70	EB 70	OA	OA	OA	0A70	0490 (04 90					ΡO	
2	60			SP 20	EB10		EB 10	EB10	EB-	0A10	OA10	06	90	90	EB10	LA10 I	A 10					100	
beech-oak	SP 30	_		EB 10	LA 10		LA 10	LA 10	10LA	LA 20	LA 20	LA 10	LA 10	LA 10	LA 20								
	EB 10			LA 10					20														
-	OA 70	-	OA 80	OA 80	0A 80		OA 80		0A 70	EB 70	EB 70	OA	OA	OA	Ĩ	0490 (06 AG					OA 100	0A 100
1 onb	SP 30		EB 20	EB 10	EB 10		EB 10		EB 10	OA10	0A10	<u> </u>	90	90		LA10 I	A 10						
Udik				LA 10	LA 10		LA 10		LA 20	LA 20	LA 20	LA 10	LA 10	LA 10									
0	OA 100																						
pine																							
Explanatory notes: ¹⁾ 1	az = forest altitudinal	zone, 2) cat.	. = category, N	VS-Norwa	y spruce, Si	P-Scots pii	1e, OA–oak,	.EB – Eurol	bean beech,	LA-larch, I	FI – fir, AL –	- alder.											

Table 5. Tree species share (in %) by GFHT for oak and beech target management in the ecological network of the typological system.

Table 6. Mani	agemer	ıt inten	sities iı	n the eco	ologic ne	etwork	of the ty	/pologic	al syste	m by mâ	aximal	gross yi	eld of fc	rest pro	ductior	<i></i>								
											Group of fe	orest habit	at types											
	trai	nsitional		e	xtreme		U	sxposed			acid			nutritious							water	rlogged		alluvial
	M	С	Х	Z	γ	ſ	Α	ы	z	Μ	K	Ι	s	В	Н	D	~	0	°	L	_ _	-	۲ ۲	U
6	MIA	4.0	-5.0																					
dwart pine	MIB	2.5	-3.5																					
0	MIC	0.5	-2.0	б	4		4	4	4	3	3		3				*		3			5	-	
spruce	MID	-2.0	-0.0	NS-2.5 5 5	NS-2 6		NS-1.5 1 5.5	NS-1.5	<mark>NS-1.5</mark> 55	NS 0.5 N 2.5	NS 0.5 2.5	4	NS 0.5 2.5			NS 4	-0.5 5		-SN 3	0.5 SP	- <mark>1.5</mark> NS 5 4	0.5 NS	-2.5 5	
	MIE	-2.5	-5.0		4			5	4		4		4	4					4			5		
7			-	NS -2.5	NS -1.5			NS 0.55	NS -0.5	NS 1.5	NS 2.5	~	NS 2.5 N	S 2.5		NS	2.5 N	S 3 NS	1.5 NS	l.5 SP-	-1.5 NS	1.5 NS	-0.5	
peecn-spruce				5.5	5.5			4.5	4.5	1.5	1.5		1.5	1.5		3	S	2 2	5 2.	4	3 2	.5 4	5	
					3		5	5	4	3	4	4	5	9	9	9	Š.	5	3			5		
0 snrirre-heerh					NS-2		NS 1	NS 1	NS 0	NS 2	NS 3	NS 3	NS4	NS 5 N	S.5 NS	:4.5 N	S 4 N	S 3 N	1 NS	1	Z	S2 N(\$ 2	
apt acc-occut					5		4	4	4		1	1			1	.5		5	2			3		
L	4	2			3	2	5	5	4	1	4	4		9	3	9		5	. 3			5		5
J fir-heech	NS 1	<u>EB –1</u>			NS-2	EB-3	NS1	NS 1	NS 0	EB 0	NS 3	NS 3	NS 5	NS 5 N	S 2 NS	:4.5 N	S 4 N	S 3	SN IS	1	Ż	S 2 N	0	
	3	2			5	5	4	4	4	1	1	1	1	1	1 1	.5	2	2	2			3		
-	2	2			2		5	5	4	1	4	4	4		9	9	5	5				5		
4 hearh	3B-1	SP –1			SP-3		NS 1	NS 1	NS 0	OA 0	NS 3	NS 3	NS 3	NS 5 N	S S NS	:4.5 N	S4 N	S 3 N	2 SP-	<u></u>	Ž	S 2 N	5 2	
10000	3	3			5		4	4	4	1	1	1	1		1 1	.5	2	2	2			3 3		
,	2	2			2	1	4	4	4	1	4	4	4		6	5		5				5	3	9
3 Aak-heech	1B-1	<u>EB –2</u>			SP-3 1	EB-4	NS 0	NS 0	NS 0	OA0	EB3	EB 3	NS 3	NS 5 N	S S NS	3.5 N	S 4 0.	A.3			Ż	S 2	AL	0 NS 3
Dar-DUCUII	3	4			5	5	4	4	4	1	1	1	1		1	S	2	2				3	3	
	2	1		2			3		1	1	1	1	2	4	5	3		4	1				9	
2 heech-oak) <mark>A-1</mark> ()A –3		0A-3			0A-1		OA-3	SP 0	OA 0	0A0	SP 1	DA3 0	A4 OA	1.5 OA	1.5 OA	.2.5 SI	O SP				OA	4
	3	4		5			4		4	1	1	1	1	1	1 1	.5 1	.5 1	.5	2				2	
-		1	2	1		2	1		1	2	1	1	3	3	2	3		4	1				5	5
I Apo		SP-3 (OA−3	0A-4	U	DA-3	0A-3		OA-3	SP 1	OA 0	040	OA2	0 2A2 0	A1 0/	A1.5 OA	1.5 OA	.2.5 SI	0 SP				OA	3 OA3
A UNIV		4	5	5		5	4		4	1	1	1			1 1	.5 1	.5 1	.5	2				2	2
c		2	1	1				2	1	1							3	~	3		~	1		
u nine		SP-2	SP-4	SP-4				SP –2	SP 0	SP 0						SI	o 1 SI	o 1 SP	-1 SP-	0.5 SI	o SP	- 4		
		4	5	5				4	1	1							2	2	3.	2	3	5		
Explanatory notes: N	3 – Norway	/ spruce, S	P-Scots p	ine, OA – 08	ak, EB – Eur	opean bee	ch, LA–larc	ch, FI – fir, A	L – alder, M	I - Managm	ent Intensi	λ,												

A detailed definition of production potential based on all available data and legislation is the key output of our analysis. In relation to the production potential analysis we will also be able to particularize parameters of management intensity.

4. Conclusion

Economy of forest natural resources exploitation has a long tradition in Europe. The concept of sustainable management of forestry was articulated as early as at the beginning of XVIII century (Carlowitz 1713). The origin and development of this economic approach was documented by numerous authors. Nobel-winning economist P. A. Samuelson (1972) formulated the model of optimal sustainable forest natural resources exploitation (Holécy & Halaj 2015). EU administration supports sustainable forest management in resolutions signed at conferences on European forests protection, e.g.:

 Ministerial conference on the protection of forests in Europe (Lisbon 1998) – Resolution L2 Pan-European Criteria, Indicators and PEOLG for Sustainable Forest Management,

 Ministerial conference on the protection of forests in Europe (Vienna 2003) – Resolution V2 Enhancing Economic Viability of Sustainable Forest Management in Europe.

Our article presents a possible approach to the discussed issue – in the framework of the cited project "Differentiation of the Management Intensities and Methods to Ensure Forest Biodiversity and Economic Sustainability of Forestry". The authors ground their approach on essential natural characteristics of forests and conclude that GFHT is the only suitable unit for spatial valuation, Typological units allow us to quantify ecological limits and economic parameters of managements and compare alternative management systems.

The methodology of the concept respects Czech legislation on forest management, esp. Forest Act No. 289/1995 and Regulations No. 83/1996 and 84/1996.

The project reflects overall efficiency of investments in relation to the operational target and the whole set of management measures - from establishing the stand to its regeneration. Careful differentiation of site conditions and appropriate management is usually sufficient for cutting the budget while not limiting the management target nor changing the ecosystem condition to an extent preventing us to increase management intensity in relation to target production, if need be. Therefore, cost-saving measures include limiting unnecessary input costs, i.e. supporting lower management intensity and leaving enough space for self-regulation within natural processes. Considering the fact that all calculations are closely related to expert findings in forest typology, appropriate management measures and their economic impact analyses, our methodology can be presented as a complex biological-ecological-economic analysis of sustainable, site-befitting forest management.

- Apart from the above-mentioned outputs of the project
 esp. for forest owners the results can also be used for:
- expressing framework economic characteristics in regional forest development plans (RFDP) and other materials of forest management,

- evaluating efficiency of money input from public budgets (subsidies and benefits for forest management),
- applying environmental accountancy in forest management.

Acknowledgement

The article is based on the research project supported by the National Agency for Agricultural Research No. QJ1220313 Differentiation of the Management Intensities and Methods to Ensure Forest Biodiversity and Economic Sustainability of Forestry.

References

- Novotný, J., Ďurský, J., Mindáš, J., 2003: Konferencie ministrov o ochrane lesov v Európe. Zvolen, Výskumný ústav lesnícky Zvolen, 199 p.
- Černý, M. et al., 1996: Růstové a taxační tabulky hlavních dřevin České republiky (smrk, borovice, buk, dub). Jílové u Prahy, Ústav pro výzkum lesních ekosystémů.
- Černý, M. et al., 1996: Růstové tabulky dřevin České republiky (modřín, jedle, jasan, bříza, olše černá, topol, habr, akát, douglaska). Brandýs nad Labem, ÚHÚL.
- Holécy, J., Halaj, D., 2015: Economics of Natural Resources. Technical University in Zvolen.
- Kupčák, V., 2006: Ekonomika lesního hospodářství. Brno, MZLU v Brně, 2. vyd.
- Kupčák, V., Pulkrab, K., 2012: Ekonomika pěstební činnosti na základě souborů lesních typů. In: Rozvoj lesnické typologie a její užití v lesnické praxi. Těchov u Blanska, Česká lesnická společnost, ÚHÚL Brandýs nad Labem, Brandýs nad Labem, p. 87–92.
- Nouza, J., Nouzová, J., 2003: Výkonové normy v lesním hospodářství. LČR, s. p.
- Pařez, J., 1987: Sortimentační tabulky pro smrkové a borové porosty různé kvality. Lesnictví, 33:919–944.
- Pařez, J., 1987: Sortimentační tabulky pro bukové a dubové porosty s kmeny různé kvality. Lesnictví, 33:1075–1090.
- Plíva, K., 1971: Typologický systém ÚHUL. Brandýs nad Labem, Ústav pro hospodářskou úpravu lesů, 90 p.
- Plíva, K., 1980: Diferencované způsoby hospodaření v lesích ČSR. Praha, SZN, 214 p.
- Plíva, K., 1998: Způsob a intenzita obhospodařování lesů podle souborů lesních typů. Praha, Ministerstvo zemědělství ČR.
- Plíva, K., 2000: Trvale udržitelné obhospodařování lesů podle souborů lesních typů. ÚHÚL Brandýs nad Labem.
- Pulkrab, K., Šišák, L., Bartuněk, J., 2009: Hodnocení efektivnosti v lesním hospodářství. Lesnická práce, 130 p.
- Von Carlowitz, H. C., 1713: Sylvicultura Oeconomica. Leipzig.
- Regulation No. 3/2008 Sb. amending Act No. 151/1997 Sb. on property evaluation.
- Regulation No. 83/1996 Sb. on regional plans of forest development and management units.
- Regulation No. 84/1996 Sb. on forest management planning. Forest Act No. 289/1995 Sb.
- Zlatník, A., 1956: Nástin lesnické typologie na biogeocenologickém základě a rozlišení československých lesů podle skupin lesních typů. Pěstění lesů III. Praha, SZN, p. 317–401.