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abstract
Regional authorities require detailed and georeferenced information on the status of forests to ensure a sustainable forest management. 
One of the objectives in the FP7 project EUFODOS was the development of an operational service based on airborne laser scanning and 
satellite data in order to derive forest parameters relevant for the management of protective forests in the Alps. The estimated parameters 
are forest type, stem number, height of upper layer, mean height and timber volume. RapidEye imagery was used to derive coniferous 
and broadleaf forest classes using a logistic regression-based method. After the generation of a normalised Digital Surface Model and 
a forest mask, the forest area was segmented into homogeneous polygons, tree tops were detected, and various forest parameters are 
calculated. The accuracy of such an assessment was comparable with some previous studies, and the R-square between the estimated 
and measured values was 0.69 for tree top detection, 0.82 for upper height and 0.84 for mean height. For the calculation of timber 
volume, the R² for modelling is 0.82, for validation with an independent set of field plots, the R² is 0.71. The results have been success-
fully integrated into the regional forestry GIS and are used in forest management. 
Key words: LiDAR; satellite data; forest parameters; protective forests; Alpine environment

abstrakt 
Regionálne plánovanie zabezpečujúce trvale udržateľný manažment lesa vyžaduje detailné a georeferencované informácie o stave lesov. 
Jedným z cieľov projektu EUFODOS (projekt 7. RP EÚ) bolo vyvinúť operatívnu službu využívajúcu údaje leteckého laserového skeno-
vania v kombinácii so satelitnými údajmi, pomocou ktorých sú odvodené informácie potrebné pre obhospodarovanie ochranných lesov 
v Alpách. Zisťované parametre sú lesný typ, počet stromov, výška hornej korunovej vrstvy, priemerná výška a kmeňová zásoba. Použilo sa 
snímkovanie systémom RapidEye pre odvodenie tried ihličnanov a listnáčov s použitím logistického regresného modelu. Po vygenerovaní 
normalizovaného digitálneho modelu povrchu a masky lesa sa plocha lesa segmentovala do homogénnych polygónov, identifikovali sa 
vrcholce stromov a vypočítali sa požadované porastové charakteristiky. Presnosť uvedených odhadov bola porovnateľná s predošlými 
štúdiami – R2 medzi odhadovanými a meranými hodnotami pozícií vrcholcov stromov bol 0,69, pre hornú výšku 0,82 a pre priemernú 
výšku porastu 0,84. Pri výpočte objemu dreva bol R2 príslušného modelu 0,82. Pri validácii s nezávislým súborom plôch bola dosiahnutá 
hodnota R2 0,71. Prezentované výsledky sa úspešne integrovali do regionálnych lesníckych GIS sú využívané pri manažmente lesa.
Kľúčové slová: LiDAR; satelitné údaje; parametre lesa; ochranné lesy; prostredie Álp

1. introduction 
Forests play a key role in the European economy and environ-
ment. Their role includes diverse ecological and economic 
functions, which can be adversely affected by insect infesta-
tions, forest fires, storms or windfall events. Local or regional 
authorities thus require detailed and georeferenced informa-
tion on forest degradation status to be able to take appropri-
ate countermeasures against the aftermaths of forest damage 
and to ensure a sustainability of forest management. How-
ever, stand and site data are most often obtained by expen-
sive ground-based surveys or time-consuming inventories 
(Schardt & Granica 2012). The terrestrial monitoring meth-
ods cannot ensure a full coverage since a complete inspection 
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of the whole area is not feasible using the available techni-
cal and personnel resources and within an acceptable time 
frame. Therefore, the FP7 EUFODOS services, based on 
remote sensing data, which were customized to users` needs, 
were developed to facilitate a precise localisation and effec-
tive assessment of forest damages as well as an operational 
derivation of desired forest parameters. 

To secure that the service development is well responsive 
to user requirements all EUFODOS users were engaged in a 
User Executive Body (Linser 2011). The intensive coopera-
tion between service providers and users facilitated the roll-
-out and uptake of the services by the users after the run-time 
of the project. The user, whose request are addressed in this 
study, is the Forestry Board of Styria, which requested a spe-
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cific service for deriving forest parameters from LiDAR and 
satellite data, which are needed for targeted management of 
Alpine protective1 forests in order to maintain and enhance 
their protective function against natural hazards. 

The objective of this study is to test the efficiency of EUFO-
DOS services in the assessment of the following forest parame-
ters: forest mask including the upper forest border line, forest 
types, stem number, height of upper layer, mean height and 
timber volume. 

This study was initiated by the fact that most of the pre-
viously used forest inventory techniques aiming at these 
parameters relied on aerial photography and ground-based 
surveys, but could not be applied in larger regions due to 
limited resources. Further on, those surveys did not allow 
the derivation of spatial distribution of forest parameters. 
Our study strives to fill some methodological gaps in data 
collection and evaluation using advanced techniques of 
remote sensing.

2. data and methods

2.1. Test region and data 
The pilot test site is located in Upper Styria in the region 
of “Murtal”, with approximately 1600 km², and is charac-
terized by a high-mountainous terrain with elevation 800 – 
2500 m a.s.l., which is prone to natural hazards. This region 
is mainly stocked with Austrian spruce (Picea abies), Euro-
pean larch (Larix decidua) and Scots pine (Pinus sylvestris), 
and in the higher parts of the subalpine tree line mixed with 
dwarf mountain pine (Pinus mugo) and green alder (Alnus 
viridis).

The LiDAR data were acquired between 2009 and 2012 
using a Riegl LMS-Q560 sensor. The point cloud density 
amounts to 4 points/m² below 2000 m a.s.l. and 1 point/m² 
above this elevation limit. Aside from the LiDAR data, also 
CIR ortho-images were available for visual interpretation. 
The LiDAR data encompassed big data volumes in *.las for-
mat (about 1.3 TB), making it necessary to transfer it via a 
hard disk.

RapidEye data was used for the classification of species 
composition (forest types). RapidEye covers five spectral 
bands, from 0.44µm – 0.73µm, with 6.5m spatial resolution 
and a very high revisit cycle based on the constellation of five 
satellites in the orbit. In order to cover the whole area, two 
data acquisitions were needed, one from July, 8th, 2010 and 
one from June, 16th 2012. Data costs for this imagery was 
1€ per km² and distributed via an ftp link by the Blackbridge 
company. 

Additionally, field measurement campaigns aiming at the 
collection of reference data for the LiDAR based assessment 
of forest biomass, respectively timber volume, were perfor-
med applying “Bitterlich Sampling” (Schreuder 1993). Alto-
gether 99 field plots were collected by the field team. For this 
field campaign the base equipment comprised a relascope, 
an altimeter (Vertex), and a calliper. The forest experts made 
measurements to obtain the following parameters:

 – Number of trees
 – Tree species
 – Diameter at breast height
 – Mean height (the mean tree of all measured diameters)
 – Upper Height (the mean tree of the three strongest trees)
 – Crown projection 

Based on these field measurements a number of forest 
parameters were calculated, as there are the basal area of 
the trees, the number of the trees and the timber volume.

2.2. Derivation of forest parameters from LiDAR 
and satellite data 
An approach combining LiDAR and satellite data was fol-
lowed to achieve the aims in a cost-effective way. Three-
dimensional structural parameters, such as height, stem 
numbers and timber volume were derived from LiDAR data, 
whereas information on the distribution of forest types (spe-
cies) have been assessed by means of optical satellite remote 
sensing imagery.

2.3. Satellite data classification
Two RapidEye satellite scenes were used for the differentia-
tion of coniferous and broadleaf classes. The used classifica-
tion method consisted of the following steps: 
 – individual image bands were fine registered as only bands 

1, 2 and 3 were geometrically coherent while bands 4 and 
5 differed. Thus, a dense image matching was performed 
between band 1 to band 3 to obtain the shift vectors. 

 – ground control points (GCPs) were manually measured 
in the resulting RapidEye image using a reference ortho-
photo and a digital terrain model. The GCPs were then 
utilized to adjust the initial sensor model followed by the 
adjusted sensor model to WGS84 UTM33 North projec-
tion.
Reference data sets were derived by visual interpretation 

of CIR orthoimagery and digitized into a vector file (shp). 
The classification was based on logistic regression (see Jost 
2006). The logistic regression is a type of probabilistic sta-
tistical classification model, which predicts the probability 
of a binary response. The formula of the logistic regression 
model is:

P – probability of occurrence of an event (percentage  
 of deciduous trees)
e – exponential function  
η – linear predictor
β – regression coefficients 
x – predictor variables (spectral values)

For the calculation of the regression coefficients the res-
ponse vector and the predictor variables are required. The 
percentage of deciduous trees of the reference data serve 

1 The management supports soil protection, water quality and quantity and other forest ecosystem functions, or protects the infrastructure and natural 
resources from natural hazards.
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as response vector and the spectral values of the reference 
data serve as predictor variables. In the next step the spectral 
values of the high resolution image and the logistic regres-
sion coefficients are used to classify the image data. The 
regression delivers for each pixel a percentage of deciduous 
trees from which the final forest type map is derived. 

In a post-processing step the classification result was 
aggregated on pixel basis into three classes (see Table 1). 

Table 1. Threshold Values for the three Forest Types Classes.
Class Percentage of broadleaved trees

Coniferous 0 to < 25 
Mixed forest 25 to 75
Broad-leafed > 75 to 100

2.4. LiDAR Data Processing
A workflow starting from the raw LiDAR point cloud and 
ending with the resulting forest parameter map is pre-
sented in Fig. 1. The most important processing steps are 
the delineation of the forest border, the detection of tree tops, 
the segmentation of homogeneous forest stands and finally 
the calculation of all forest parameters. The entire workflow 
is operated as an automated procedure implemented in the 
Joanneum Research in-house software package IMPACT as 
the “IMPACT LiDAR Toolbox”.

Fig. 1. Workflow for LiDAR data processing.

The digital terrain model (DTM) and the digital surface 
model (DSM) were imported into a raster file from the ori-
ginal point cloud data (available in *.las format) with spa-
tial resolution of 50 cm. Then, a normalized digital surface 
model (nDSM) was derived as the difference between the 
digital surface model and the digital elevation model. A forest 
mask is derived from the nDSM. The nDSM within the forest 
mask is then used for tree top detection, segmentation, forest 
parameters and tree volume calculations. The following 
parameters were derived for each polygon (generated by 
the segmentation procedure) in the region:
 – Trees per hectare 
 – Coniferous/broadleaf percentage 
 – Upper and mean tree heights 
 – Exposition, slope, height above sea level 
 – Canopy space integral 

This canopy space integral is defined as the sum of all 
vegetation heights in a forest segment and it serves as an 

intermediate parameter, which is later on used as input 
variable to derive the timber volume. 

2.4.1 Generation of Forest Border 
and Forest Mask

The forest border line was derived according to the forest defi-
nitions by the Styrian Forest Administration: i.e. minimum 
crown cover of trees is 10 %, minimum tree height above 
1.3 m, minimum distance between stocked areas is 10 m, mini-
mum stocked (> 10% crown closure) area of 1000 m², and 
minimum un-stocked area of 1000 m². Further, a separation 
of shrub-land (dwarf mountain pine, green alder stands and 
succession areas) was performed by applying the same gen-
eralization procedure in addition with a “maximum potential 
tree height” below 5 m. 

Settlements and water areas are automatically excluded 
using morphological operations based on the classified LiDAR 
point cloud. Then crown cover is calculated over segments 
with a minimum size of 1000 m² (specified by the Styrian 
user). The crown cover is thereby defined as the proportion 
of the forest floor covered by the vertical projection of the 
tree crowns over the respective segments. Within areas with 
a crown cover above the specified “minimum crown cover” 
parameter, aggregation according to the specified “minimum 
distance between stocked areas” is applied. 

Next a generalization is performed according to the “mini-
mum stocked area” and “minimum unstocked area” para-
meters by applying standard morphological operations. As a 
result, stocked areas are delineated. Only the LiDAR data is 
used as input to these automatic processing steps. 

Often, the forest area definition requires taking into acco-
unt further nomenclature constraints, such as incorporation 
of temporarily un-stocked areas into forest land or exclusion 
of tree covered areas according dominant land-use (e.g. parks, 
orchards, arable land with trees). To incorporate such addi-
tional constraints into the generalization process, visual refi-
nement of the automatically derived results was performed.

2.4.2 Tree Top Detection

The Tree Top Detector automatically detects tree tops 
based on the LiDAR nDSM  as input. The method uses a 
multi-scale Laplacian of Gauss (LoG) method, which is a 
combination of the Laplacian and Gauss filter (Gonzalez & 
Woods 2002). The procedure consists of the following five 
steps (the intermediate results are shown in Fig. 2). First, 
the LoG is used to blur the image, with the degree of blur-
ring being determined by the value of the standard deviation 
(s). The procedure used here involves three scales of LoG 
filtering based on three different s values (2, 3, 4) in order 
to detect trees of different size. The results of the LoG filter-
ing with different s are depicted in Fig. 2b), (c) and (d). An 
appropriate sigma value was selected on the basis of Chen et 
al. (2006). Second, the original nDSM is processed using a 
simple LMA (Local Maxima Approach) (Fig. 2e). Third, the 
LoG images are weighted according to their respective level 
(s) and then added (Fig. 2f). Fourth, intensity maxima are 
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detected using LMA in the image produced in the previous 
step (Fig. 2g). Fifth, the intensity maxima are dragged to 
their nearest height maximum (result from the step 2) (Fig. 
2h) (Hirschmugl 2008).

2.4.3 Derivation of Homogeneous Forest 
Segments
Within the test site a segmentation procedure is applied to 
divide the forest into relatively homogeneous forest segments 
based on the input nDSM and an existing set of forest roads. 
The resulting forest segments represent a homogeneous 
dominant height and vertical forest structure. In order to 
ensure similar tree height the nDSM is used. For assessing 

Fig. 2. Processing steps and intermediate results for the LoG approach based on LiDAR nDSM data. Source: Hirschmugl (2008).

Fig. 3. Refinement of segmentation outlines: left: pink – coarse segmentation, blue – fine segmentation, right: red – combined result.

the vertical stand structure, a minimum variance wedge 
filter is calculated. These two data sets are then stacked to 
one image and used in a three-step region growing image 
segmentation procedure to derive polygons of homoge-
neous forest segments. The first step is a coarse segmen-
tation, which derives the main skeleton of segments. This 
coarse segmentation uses the input files down-sampled to 
5 m spatial resolution and smoothed by symmetric nearest 
neighbor (SNN) filter. The result shows the main borders, 
but the polygons do not exactly correspond to the tree crown 
outlines. Therefore, in a second step, a fine-segmentation 
is performed using the full resolution data and resulting in 
a clear over-segmentation of the forest, but representing 
a more exact delineation along the tree crowns.
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reference data sets yield the R² of 0.82. The given equation 
was used to compute the timber volume for the entire area.

Fig. 5. Regression between timber volume and canopy space 
integral.

3. results

3.1. Classification of Forest Types
The fine-registration of bands 1, 2 and 3 with bands 4 and 
5 was performed before the geocoding. As topographical 
distortions were detected in a flight direction (Table 2), the 
bands 4 and 5 were registered employing the determined 
shifts.

Table 2. Statistics of automatically determined shifts in pixels 
between the image bands (in pixels).

Along track Across track
Mean −0.03 −0.00
Std 0.63 0.07
Min −3.37 −1.57
Max 2.75 1.78

After the fine-registration, the 50 ground control points 
(GCPs) were manually measured in the resulting RapidEye 
image using a reference ortho-photo and a digital terrain 
model. The GCPs were then utilized to adjust the initial sen-
sor model yielding the accuracy given in Table 3. The geo-
coding was then performed with the adjusted sensor model 
to 5 meters GSD (Ground Sampling Distance) in WGS84 
UTM33 North projection.

Table 3. Accuracy of the 50 GCPs after sensor model adjustment 
given in meters.

Res-X Res-Y Length
RMS 4.40 3.85 5.85
Mean 0.00 0.00 5.00
Std 4.40 3.85 3.05
Min −11.05 −11.50 0.45
Max 10.45 9.60 13.20

The quality of the resulting pixel-based forest-type map 
was assessed by an independent verification. The 57 verifi-
cation areas were selected and interpreted in the same way 

In the third step, the two results are combined by snapping 
the coarse segment borders to the fine segmentation outli-
nes (Fig. 3). The pink lines are the coarse segment borders 
and the blue lines are the fine segment borders. After the 
combination, the resulting borders (red) are automatically 
adapted as long as the distance to the original line is below 
a user defined threshold, which was set to one meter in the 
current case. 

The final forest segments (Fig. 4) are used to calculate 
the forest parameters within each polygon.

Fig. 4. A subset of the segmentation result showing forest stand 
borders (yellow lines).

2.4.4 Derivation of Forest Parameters
First, based on the tree top detections, the stem numbers per 
segment and per ha are calculated. Second, based on both the 
tree top detections and their respective tree heights within 
each segment, three different forest segment height values 
are calculated: Height of upper layer (i.e. the mean height of 
20% highest trees per segment), mean height (i.e. the mean 
height of all detected trees) and height of second layer, if 
existing (i.e. the mean height of the 20% highest trees of the 
second layer, which are trees smaller than 2/3 of the height 
of the upper layer). Third, mean slope, main aspect and mean 
height above sea level are calculated for each segment.

Finally, timber volume is calculated for each segment 
using parameter settings proposed by Hirschmugl et al. 
(2013). They tested different variables i.e. those specify-
ing the link between the ground-based reference data and 
the LiDAR-based variables for their suitability to estimate 
timber volume. Individual variables and combinations of 
variables available from the forest parameters processing 
were tested, e.g. height of upper layer, mean height, canopy 
cover, height above sea level, and the so-called ‘canopy space 
integral’, which is defined as the sum of all vegetation hei-
ghts in a forest segment. The canopy space integral derived 
from LiDAR data gave the best results (Hirschmugl et al. 
2013) and were thus used in the current study. From the 99 
field plots, a listed sampling was done, where the plots were 
listed according to the timber volume. Every third plot was 
assigned as validation data and thus omitted from the model-
ling. The remaining plots served as reference data to build 
the regression model (Fig. 5). The regression using these 66 
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as the training areas (see above). For each verification area, 
the mean percentage of broad-leafed trees was calculated. All 
pixels of this area then were assigned to the corresponding 
forest type. Finally, all reference pixels (i.e. all pixels which 
are included within a verification area) were compared by 
means of a contingency matrix. 

Table 4. Accuracy of forest type classification: pixel count.
Pixel count Classified
Reference Coniferous Mixed Forest Broadleaved Sum

Coniferous 17648 1192 0 18840
Mixed forest 1387 6126 1133 8646
Broadleaved 0 293 1150 1443
Sum 19035 7611 2283 28929

Table 5. Accuracy of forest type classification: percent.
Percent Classified

Reference Coniferous Mixed Forest Broadleaved
Coniferous 92.71 15.66 0.00
Mixed forest 7.29 80.49 49.63
Broadleaved 0.00 3.85 50.37

The overall accuracy counts for 86.16%. Whereas coni-
ferous forest could be classified very well, major deviations 
occurred between mixed forest and broadleaved forest. In 
general, the area of broadleaved forest was overestimated 
(ref. Table 4).

3.2. Forest Border and Forest Mask
After the derivation of the Alpine tree line, the forest mask 
was derived using an automated approach. The processing 
result was then revised by visual control due to ambiguous 
borders and areas which could not be derived using the auto-
mated processing. A quality control has been performed by 
random sampling with 298 sampling points. The forest and 
non-forest areas were compared by visual interpretation of 
LiDAR and CIR aerial imagery according to defined nomen-
clature specifications. The result shows an overall accuracy 
of almost 99% (Table 6).

Table 6. Accuracy assessment of the forest mask.
0 – No forest 1 – Forest User accuracy [%]

0 – No forest 90 0 100.00
1 – Forest 3 205 98.56
Producer accuracy [%] 96.77 100.00
Overall accuracy [%] 98.99

3.3. Forest Stand Segmentation
The forest area was divided into homogeneous forest patched 
by automatic segmentation. The result is shown in Fig. 6 a). 
A quantitative evaluation of such an automated segmenta-
tion result is a rather impossible task, as there is no absolute 
ground truth. Therefore, the result is visually compared to 
an independent visual-manual segmentation done by an 
experienced interpreter (Fig. 6 b). There are two main dif-
ferences: first, the automated segmentation produces smaller 
segments, especially in the areas of low canopy cover or close 

to the upper forest border. Second, the automatic segmen-
tation outline is – due to the refinement step – much more 
detailed than the manual segmentation result. The differ-
ences between the two results are shown in Fig. 6.

Fig. 6. Comparison of lines derived using the automated segmen-
tation (a) and using the visual interpretation (b). Forest roads are 
displayed in yellow color.

Fig. 7. Result from the tree top detection.

3.4. Tree Top Detection
Figure 7 shows the result of the tree top detection in an area 
of forest stands with different growth classes. For accuracy 
assessment, the result is compared with stem numbers esti-
mated in the field. An evaluation could not be done on an indi-
vidual tree basis, because the field survey did not provide the 
data on all trees. Instead, a stand wise comparison, based on 
the field plots, was applied. Comparing the stem numbers 
of all plots with the number of trees detected automatically 
led to R² of 0.54 (Fig. 8 a). The figure suggests that the auto-
matic approach is not able to detect all trees in very dense 
forests (above 1500 stems/ha). Therefore, plots above 
1500 stems/ha were omitted, which increase the R² to 0.69 (see 
Fig. 8 b). In terms of mean difference, the error decreased from 
33% for all plots to 30% when the dense plots were removed. 

3.5. Forest Stand Parameters
For each of the segments, the height of the upper layer and 
the mean height were calculated. Fig. 9 shows the compari-
son of the mean heights derived from the LiDAR data com-
pared to the field measured mean height. The R² is 0.84. The 

(a) (b)
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Fig. 10. Subset showing the upper height in meters per stand.

Fig. 11. Subset for the derivation of timber volume (in solid cubic 
meters).

4. discussion
New and innovative LiDAR tools have successfully been 
adapted and implemented due to the user’s feedback within 
the development of the service. An important module, 
urgently requested by the forest experts, is that on segmen-
tation, which was used to derive the homogeneous forest 
segments. The segmentation was automatized to meet the 
requirements of forest experts. A comparison with the con-
ventionally derived stand borders showed two main differ-
ences: first, the automatic segmentation led to smaller and 
thus more segments than an interpreter would be able to 
delineate. Considering the use of the segments, this over-
segmentation does not pose a problem, because in further 
analysis, neighbouring patches with similar forest attributes 
can be merged, if more generalized maps are needed.  Second, 
the outlines of the automated segmentation are much more 
detailed than the conventional segmentation. This detailed 
outline is actually an advantage for the following automatic 
processing, because straight lines as usually done by manual 
segmentation tend to cut trees in half leading to errors in the 
calculation of the forest parameters, especially for height of 
dominant layer and timber volume. The current segmenta-
tion procedure utilizes the nDSM and the forest roads, but in 
future, additional inputs, such as optical data can be used to 
ensure the segments are homogeneous in terms of tree height 

R² for upper height is 0.82. Fig. 10 shows the map result 
exemplarily for the upper height per polygon.

Finally, timber volume was calculated per stand based on 
the canopy space integral and the field plot data. From the 
altogether 99 field plots of the ground truth campaign, one 
third of the plots were used for the validation. The analysis 
showed an R² of 0.71.

A further comparison of the calculated timber volume 
for managed forests over the entire “Murtal” region with the 
official numbers from the public Authorities showed that the 
numbers correlate quite well, i.e. 29277 solid cubic meters vs. 
30333 solid cubic meters, respectively (BFW 2009).

Fig. 8. Comparison of stem numbers per ha using a) all field plots 
and b) only field plots with less than 1500 trees/ha.

Fig. 9. Comparison of mean height from field plots and derived 
from LiDAR data. 

(a)

(b)
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and structure as well as in terms of species composition or 
forest types (coniferous/broadleaf). 

The derivation of forest border at the upper forest bor-
derline can be considered as a challenging task. Several 
rules have been tested to obtain a proper forest border, e.g. 
different distances between single trees or crown coverage 
thresholds. At the same time, the results were evaluated in 
field excursions and validated by the user. The validation 
showed that the forest border is highly accurate with almost 
99% overall accuracy and therefore this approach can be 
considered as superior to previous forest masks, which were 
generated from satellite or orthophoto data, where an overall 
accuracy reached 96% (Gallaun et al. 2007). 

The overall accuracy for the classification of forest types 
is 86.16%. Iost (2006) used this method for forest-non-forest 
classification and for the determination of the mixture of 
coniferous and broadleaved trees. He achieved an accuracy 
of 94.1% for the forest non-forest map and 75% – 83% for 
the forest type classification. 

The tree top detection was performed in a fully automatic 
manner with expected accuracy. Analysis showed that trees 
in very dense stands are most prone to omission error. Our 
mean difference results of 33% (all plots) respectively 30% 
(plots with < 1500 stems/ha) are worse than previously 
achieved accuracies reported by Sačkov et al. (2014), who 
showed an mean difference of 11%. One reason for this dif-
ference might be the density of the forest: in Sačkov et al. 
(2014) the stand with the highest density had a stem number 
of 1000 stems/ha, while in our test area, there are 23 plots 
with stem numbers above 1000 stems/ha. Another reason 
might be the type of field data used for comparison: while 
Sačkov et al. (2014) could rely on full assessment of all indi-
vidual trees, our stem numbers are only modelled based on 
the measured Bitterlich samples. Finally, Sačkov et al. (2014) 
used the full LiDAR point cloud data, while our approach is 
based on the nDSM. Quality control was also done visually 
by both the developers and the users. The evaluation showed 
that tree tops from almost all visible trees could be detected 
but small trees hidden beyond larger tree crowns are typi-
cally omitted. This has already been found by other authors 
(Sačkov et al. 2014; Kaartinen & Hyppä 2008). The most 
important advantage of the developed Tree Top Detector is 
its independence from tree models, i.e. no a-priori informa-
tion about tree species is necessary. Finally, based on the 
current results further investigations are foreseen to evalu-
ate the detection rate also in relation to species composition 
and age classes. 

Another important product was the computation of 
maps showing the timber volume for each polygon. For ref-
erence a set of “Bitterlich” samples has been acquired, that 
is on the one hand needed to establish the regression model 
and on the other hand used to verify the results. In order to 
properly correlate the sampling results and the LiDAR data 
results, several issues have to be kept in mind: (i) different 
growth environments need representative and comprehen-
sive sampling, (ii) changes between LiDAR data acquisition 
and field work have to be detected and (iii) to select repre-
sentative samplings in the preparation of the field maps to 
avoid inconsistency in the field data, which could happen 
if field campaigns are performed by different people. With 

this respect, the EUFODOS experience confirmed previ-
ous applications (Clementel et al. 2011), but also showed 
optimization potential especially with regard to the missing 
information of age classes. However, the accuracies of the 
timber calculations were in line with the calculations from 
existing investigations (Hollaus 2009; Wack 2006) and cor-
relate quite well with official numbers. 

Stand height maps, with upper height and mean height, 
were also produced with accuracies (R²) of 0.82 and 0.84 
respectively, because these are important parameters for the 
forest GIS. The above presented method and results showed 
that LiDAR data are an excellent source for the derivation 
of this parameter type, which is confirmed from previous 
studies (Means et al. 2000; Wack 2006). 

5. conclusions
The Styrian Forestry Board is not in the position to realize 
in situ surveys on forest parameters over large areas because 
field assessments are time and resource consuming. There-
fore, the experts from Styrian Forestry Board decided to 
use remote sensing based methods for the derivation of the 
required forest parameters.

The results in the Austrian test case within the EUFO-
DOS project proved that it is possible to derive forest para-
meters over large regions using a combined approach of 
LiDAR and satellite data. The regional Forestry Board of 
Styria approved these results and confirmed that they have 
received valuable data for improving their management tasks 
within protective forest areas. In EUFODOS a processing 
line for the derivation of forest parameters from high-reso-
lution LiDAR data was developed and implemented into an 
operational toolbox. The EUFODOS LiDAR toolbox is now 
in an operational status and is disposed for commercial sel-
ling (Schardt 2014). 
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