
Lesnícky časopis - Forestry Journal, 58(2): 75–91, Bratislava, 15. 9. 2012 75

Pôvodné práce – Original papers

FOREST STRUCTURE, COMPETITION
AND PLANT-HERBIVORE INTERACTION
MODELLED WITH RELATIONAL
GROWTH GRAMMARS

WINFRIED KURTH1, OLE KNIEMEYER2 and BRANISLAV SLOBODA1

1University of Göttingen, Department Ecoinformatics, Biometrics and Forest Growth, Büsgenweg 4,
D – 37077 Göttingen, Germany, e-mail: wk@informatik.uni-goettingen.de
2MAXON Computer GmbH, Max-Planck-Str. 20, D – 61381 Friedrichsdorf, Germany

Dedicated to Prof. Ing. Štefan Šmelko, DrSc.
an international expert in forest management and forest biometrics

who promoted partnership between Technical University Zvolen
and Georg-August University Göttingen.

KURTH, W., KNIEMEYER, O. and SLOBODA, B., 2011: Modelovanie štruktúry lesných porastov,

konkurencie a interakcie medzi herbivormi pomocou relačných rastových tabuliek. Lesn. Čas. – Forestry

Journal, 58(2): 75–91, 2012, fig. 12, tab. 4, ref. 40, ISSN 0323 – 1046. Original paper.

Relačné rastové gramatiky sú systémy prepisovacích pravidiel (grafové gramatiky) s grafickou

interpretáciou. Umožňujú spätnú väzbu z vytvorených virtuálnych 3D štruktúr do ďalšieho procesu

aplikácie pravidiel. Ich použitím je možné kombinovať morfologické (geneticky viazané) rastové pravidlá

s environmentálnym vplyvom a s funkciami hodnotiacimi konkurenčnú situáciu jednotlivých rastlín.

Relačné rastové gramatiky sú preto ideálnym nástrojom na presnú špecifikáciu funkčno-štrukturálnych

modelov rastu a architektúry rastlín. Dynamika vývoja porastu v takýchto modeloch vyplýva z čisto

lokálnej aplikácie pravidiel. Predbežné výsledky sú ukázané na troch aplikáciách modelovania lesného

ekosystému: (a) Tvorba nepravidelných porastových štruktúr, (b) simulácia vplyvov konkurencie na

vývoj polomeru koruny a výslednú dynamiku porastu a (c) modelovanie interakcie medzi stromami

a herbivormi, založené na energetických nárokoch individuálnych rastlín a živočíchov. Posledný model

zahŕňa genetický prenos a evolúciu potravnej stratégie živočíchov. Softvérový systém GroIMP (Growth-

grammar related Interactive Modelling Platform), open source projekt prístupný na www.grogra.de, bol

navrhnutý na interpretáciu relačných rastových gramatík v objektovo orientovanom rámci. Tiež slúži na

vizualizáciu výsledných priestorových štruktúr. Kód, spustiteľný v GroIMPe, je pre vyššie spomenuté

modely kompletne dokumentovaný a vysvetlený. Dúfame, že uvedenými príkladmi budeme motivovať

čitateľov k používaniu na pravidlách založených štrukturálnych modelov v ekológii lesa.

Kľúčové slová: konkurencia, štruktúra, herbivory, model, gramatika, FSPM (functional-structural
plant model)

Relational Growth Grammars are systems of rewriting rules (graph grammars) with graphical

interpretation. They allow a feedback from the created virtual 3-d structures to the subsequent rule-

application process. Using them it is possible to combine morphological (genetically fixed) growth rules

with environmental impact and with functions evaluating the competitive situation of individual plants.

Relational Growth Grammars are thus an ideal tool for precise specification of functional-structural

models of plant growth and architecture. The dynamics of stand development in such models results from

lesnik2012_2.indd 75lesnik2012_2.indd 75 13.9.2012 3:10:0813.9.2012 3:10:08

76 Lesnícky časopis - Forestry Journal, 58(2): 75–91, Bratislava, 15. 9. 2012

1. Introduction
With the advance of information technology, simula-

tions of large and complex biological systems, formerly
considered intractable because of the amount of necessa-
ry calculation time and memory space, became possib-
le. As a consequence, individual-based simulation mo-
dels which are expected to reproduce and to predict fo-
rest structure and stand dynamics have received increa-
sing attention in recent years (DEANGELIS, GROSS, 1992;
GRIMM, RAILSBACK, 2005; PRETZSCH 2001, 2009). Among
different types of ecosystems, natural forests are charac-
terized by a particularly high degree of spatial hetero-
geneity and complex structure. Moreover, changing the
spatial structure is the main method used by foresters to
manipulate the development of forest stands and of in-
dividual trees (BORMANN, LIKENS, 1979). Individual-ba-
sed models have the advantage that spatial structures
of competing trees can be represented in a natural way.

When a researcher is confronted with the large num-
ber of existing complex models, there arises the need for
short and precise model specifications. Whereas sim-
ple models of whole-stand dynamics, disregarding spa-

tial structure, can often be expressed in terms of one or
several equations, models involving spatial details usu-
ally need computer source code, written in a standard
programming language (such as Fortran, C, C++ or
Java), for their full specification. However, classical so-
urce code does usually involve many technical construc-
tions distracting attention from the essentials of the mo-
del, and cannot be understood easily by users who are
not computer scientists or professional programmers.
Furthermore, the requirements of generalness and mo-
dular design of software (cf. ACOCK, REYNOLDS, 1997) are
often violated by ad-hoc models implemented by biolo-
gists or agronomists who lack specific training in soft-
ware development.

A way to overcome these difficulties is the design
of a higher-level model specification language, adapted
to the particular needs of tree and stand simulation and
spatial interaction. When model specifications written
in this language can be read and interpreted by a generic
software, there will be no need to modify and re-com-
pile the source code of the software each time some as-
sumptions or relations in the model are changed. Instead,

purely local rule application. Preliminary results are shown for three applications in forest-ecosystem

modelling: (a) Creation of irregular stand structures, (b) simulation of competitive effects on crown

radius development and resulting stand dynamics, and (c) modelling the interaction between trees and

herbivores, based on the energy budgets of the individual plants and animals. The latter model includes

genetical transfer and evolution of the foraging strategy of the animals. The software system GroIMP

(Growth-grammar related Interactive Modelling Platform), an open source project available under www.

grogra.de, was designed to interpret Relational Growth Grammars in an object-oriented framework. It

also serves to visualize the resulting spatial structures. The code, executable by GroIMP, for the above-

mentioned models is completely documented and explained. By our examples, we hope to motivate the

readers to use rule-based structural models in forest ecology.

Keywords: competition, structure, herbivores, model, grammar, FSPM (functional-structural plant
model)

Fig. 1. Comparison of the architecture of a classical simulation model (left side), where each modification requires rewri-

ting of the software source code, with a generic software shell for an advanced model-specification language (like Relational

Growth Grammars; right side)

lesnik2012_2.indd 76lesnik2012_2.indd 76 13.9.2012 3:10:0913.9.2012 3:10:09

Lesnícky časopis - Forestry Journal, 58(2): 75–91, Bratislava, 15. 9. 2012 77

only the specifications made in the high-level language
are to be modified, and these can be made open to “in-
formed users” other than computer scientists (Figure 1).
Comparisons of different models are easier if the ba-
sic software with its technical details remains the same.

A candidate formalism which could adopt the role
of such a high-level specification language is the cellu-
lar automaton (CA). A CA is specified by a transition
function which determines the state of a cell in a grid
from the previous states of the same cell and its neighbo-
urs. CA has been used for a number of ecological mo-
dels (ERMENTROUT, EDELSTEIN-KESHET, 1993), including
forest models. However, their inherent preferential tre-
atment of certain directions, spatial and temporal sca-
les restricts their use.

A different general specification language for bi-
ological growth processes is the rule-based language
of L-systems (Lindenmayer systems, named after the
botanist Aristid Lindenmayer, 1925–1989). Originally
devised to resemble growth rules of simple, filamen-
tous plants (LINDENMAYER, 1968), numerous extensi-
ons have been added to the formalism since then (PRU-
SINKIEWICZ et al., 1997; KURTH, 1999, KURTH, SLOBODA,
1999a). However, the main field of application of this
language is still the specification of the architecture of
individual plants.

L-systems have been extended to a formalism ter-
med Relational Growth Grammars (RGGs) (KNIEMEY-
ER et al., 2004; KURTH et al., 2005; KURTH, 2007). In
contrast to L-systems, which operate on strings, RGGs
transform general networks (graphs) and are thus more
powerful. Furthermore, we have embedded RGGs into
a full-scale object-oriented programming language cal-
led XL (eXtended L-system language). It enables a smo-

oth combination of rule-based and classical (imperati-
ve) constructions (KNIEMEYER, 2008; KURTH et al., 2005;
KURTH, LANWERT, 2011). Simulation models specified
in XL can be compiled and run by the software Gro-
IMP (Growth-grammar related Interactive Modelling
Platform), which is available at www.grogra.de as an
open-source project (KNIEMEYER et al., 2007).

In this paper, we aim to explore the possibilities of
RGGs (expressed in the programming language XL)
for spatial simulations at a lower scale of resolution. In
our examples, the architecture of single trees will be hi-
ghly simplified, but their spatial arrangement, compe-
tition and interaction with mobile herbivores will be
taken into account. In the same way as for L-system
based models of architectural development of single
trees, the dynamics of development will result from pu-
rely local rule application. That means, no global curve
of self-thinning or other aggregated description of stand
growth is taken as input. Instead, the overall behaviour
of the model will result as an emergent property from
local rules (cf. BRECKLING, 1996).

2. Theoretical Background

2.1. L-Systems
An L-system consists of a set of symbols, a start sym-

bol a and a set of replacement rules, each of the form
“symbol → string of symbols“. Additionally, there is a
geometrical interpretation of the strings (i.e., a seman-
tics) translating strings of symbols into structures in 3-d
space. Usually, this interpretation is given by the con-
ventions of turtle geometry (ABELSON, DISESSA, 1982):
Some symbols are used as commands for a virtual de-
vice (the turtle) which is able to move (command “M”),

Fig. 2. Development of geometrical structures specified by the growth grammar A ==> F0 [RU(45) B] A; B ==> F0 B.
Horizontal arrows stand for rule application, dotted vertical arrows for interpretation of the strings by the turtle

lesnik2012_2.indd 77lesnik2012_2.indd 77 13.9.2012 3:10:0913.9.2012 3:10:09

78 Lesnícky časopis - Forestry Journal, 58(2): 75–91, Bratislava, 15. 9. 2012

– further geometrical objects (polygons, spheres, co-
nes, boxes, spline surfaces) are available as node ty-
pes and can be used for modelling,

– the standard node types like F, Sphere etc. can
be extended by additional, user-defined parameters
(like, e.g., carbon content),

– queries for certain node types, e.g. (* Tree *) for
all nodes of type “Tree”, can be used to search in the
structure generated during a simulation and, e.g., to
count all trees or to calculate their total biomass,

– the order of the application of rules can be control-
led using blocks of rules, conditions and loops,

– functions written in the object-oriented programming
language Java (GOSLING et al., 2005) can be used
for calculations, and Java code enclosed in braces
{...} can be inserted in the right-hand side of ru-
les. This enables an execution of conventional, impe-
rative code each time when the rule is applied. Parti-
cularly, a “sensitivity” of growing elements with res-
pect to the environment or to competing objects in the
neighbourhood can thus be simulated.
These extensions will be further clarified when they

are used in the examples below. A complete langua-
ge description of XL, including a precise definition of
RGGs, is given by KNIEMEYER (2008). All pieces of code
presented in the given examples will be readable by the
software GroIMP. We refer to KURTH (2007), to the menu
item “examples” in the software GroIMP itself and to
www.grogra.de for further simple examples.

3. First Example: Specification of Irregular
Stand Structures
The first application of the grammar formalism at

stand level is the specification of patterns of tree posi-
tions, disregarding dynamic aspects. Models of stand
structure have often used stochastic approaches like
point processes (PENTTINEN et al., 1994) or heuristic al-
gorithms (LEWANDOWSKI et al., 1997). Extended L-sys-
tems provide a framework for a transparent specification
of such models. Let us first focus on tree positions only,
disregarding all other attributes such as height, diameter,
tree species etc. The simplest grammar rule for an irre-
gular stand generates a random pattern of tree seedlings:

Stand ==> for ((1:n))
([move to random position Seedling
(random(10, 20))]);

where n is the number of seedlings dispersed over the
stand area and Seedling(length) an object stan-
ding for a seedling of height “length”. Firstly, this
“seedling” node type must be defined as a user-defined
extension of a standard node type, let us say, F (which
generates an object of cylindrical shape):

module Seedling(super.length) extends
F(length, 5, 4);

to produce cylindric elements while moving forward
(command “F”), to rotate (command “RU”) or to chan-
ge internal parameters used for the next elements to be
produced (commands “L” for length, “D” for diameter,
and more; see KURTH (1994) for details). Brackets [...]
are interpreted as delimiters for branches.

The rules of the L-system are applied in parallel to all
symbols of a string at time t in order to get a new string
at time t+1. This rewriting process is normally iterated
several times. Thus one gets a (potentially infinite) sequ-
ence of turtle command strings s0, s1, s2, Here, st+1 is
obtained from st by application of the rules, and s0 = a.
The string st is interpreted in terms of turtle geomet-
ry, resulting in a geometrical model of a single plant or
stand at time t. By proceeding in discrete time steps, we
obtain a developmental sequence of geometrical struc-
tures. In models of individual plants, the time step of-
ten corresponds to 1 year or even to shorter periods of
growth. However, in our application examples the time
step will represent a period of several years of stand de-
velopment. Figure 2 shows the strings and geometrical
structures resulting from the application of a very sim-
ple, classical L-system describing the growth of a bran-
ching system. The start symbol is “A”. The L-system
has only two rules: A ==> F0 [RU(45) B] A
and B ==> F0 B. The symbols A and B, standing for
apical buds of main and lateral branches, respectively,
are normally not interpreted by the turtle. In Figure 2, we
have visualized the corresponding buds by ovals. The L-
system contains one symbol with a parameter: RU, with
the subsequent number specifying the rotation angle in
degrees. Parameters can also be attached to other sym-
bols like A and B (PRUSINKIEWICZ, LINDENMAYER, 1990).
F0 is a turtle command for movement and branch con-
struction which has no (i.e., zero) parameters, in con-
trast to the F command in XL which expects (at least)
the length of the next shoot as a parameter. Further com-
mands will be explained in the subsequent examples
where they are needed.

2.2. Relational Growth Grammars (RGGs)
RGGs are a proper extension of L-systems. All L-

systems can also be realised as RGGs in the program-
ming language XL. In an RGG, the symbols are inter-
preted as nodes of a graph. These nodes can be connec-
ted by arbitrary edges. In our examples, we use mostly
one special type of edges, which correspond to the “su-
ccessor” relation in L-system strings. They are automa-
tically generated when a “blank” symbol is read betwe-
en two symbols standing for nodes in XL. This conven-
tion enables a direct embedding of L-system notation
in XL code.

RGGs in the language XL generalise L-systems in
the following aspects:
– More than one symbol (node) can be replaced in a

rule,

lesnik2012_2.indd 78lesnik2012_2.indd 78 13.9.2012 3:10:0913.9.2012 3:10:09

Lesnícky časopis - Forestry Journal, 58(2): 75–91, Bratislava, 15. 9. 2012 79

where the “5” in the specification of F stands for a fixed
diameter and “4” for a colour index. “super.length”
means that the parameter “length” is taken from the “su-
perior” (more general) node type F.

In our rule above, for length a uniformly distri-
buted random number between 10 and 20 was inserted,
making the seedlings vary in their height between the-
se limits. Movement to a random position within, let us
say, a rectangular area of extensions xextens and yextens can
be specified by a translation command:

Translate(random(0, x_extens),
random(0, y_extens), 0)

which uses random numbers for x and y and does not
make use of the third dimension (z = 0). When this com-
mand (which specifies, technically, also a node of the
graph) is inserted into the above replacement rule inste-
ad of “move to random position”, the result will be a ran-
dom distribution of seedling positions with uniform dis-
tribution of x and y coordinates (i.e., a “Poisson forest”).

However, during growth, close neighbours will nor-
mally be outcompeted. To obtain a pattern where a mi-
nimum distance between the trees is respected, we can
modify the grammar by introducing a function not-
Outcompeted, which checks if in a certain nei-
ghbourhood of a seedling another seedling with greater
“length” parameter (i.e., with greater height) occurs.
This must be a function of type “boolean” (i.e., the re-
sult is true or false). The investigation of the neighbour-
hood is done by a query for all seedlings different from
the considered seedling and having a distance smaller
than a threshold value, inhib_r:

boolean notOutcompeted(Seedling s)
{
return empty((* t:Seedling, ((t != s) &&

(distance(s, t) <= inhib_r) &&
(t[length] >= s[length])) *));

}

Fig. 3. Result of the growth grammar irreg (Table 1) after 2 steps (pattern of seedlings; upper part) and after 3 steps (pat-

tern of mature trees, lower part). Slanted view, parallel projection

lesnik2012_2.indd 79lesnik2012_2.indd 79 13.9.2012 3:10:0913.9.2012 3:10:09

80 Lesnícky časopis - Forestry Journal, 58(2): 75–91, Bratislava, 15. 9. 2012

The seedling which is under consideration has the
name s, whereas the potential competitor in the query
is labelled with the name t. The symbols “&&” stand in
Java (GOSLING et al., 2005) for the logical “and” opera-
tion. It is used to combine the three conditions for the
existence of a dominating competitor, namely, that it is
different from s, that its distance is below the threshold,
and that its height is larger than that of s.

By the conditional rule

s:Seedling(h) ==> if (notOutcompeted(s))
 (Tree(factor*h +
 normal(0, 15)))
 else ();

Table 1. The Relational Growth Grammar irreg

/* irreg.rgg: specifi cation of an irregular stand structure
 in the 2D plane with random tree coordinates, but
 close neighbourhoods of larger individuals excluded */

module Stand;
module Seedling(super.length) extends F(length, 5, 4);
module Tree(super.length) extends F(length, 7, 2);

int n = 150; /* initial number of seedlings */
double x_extens = 500; /* extension of stand */
double y_extens = 350;
double inhib_r = 35; /* distance which inhibits growth */
double factor = 4; /* proportionality of seedling
 and tree height */

boolean notOutcompeted(Seedling s)
 {
 return empty((* t:Seedling,
 ((t != s) && (distance(s, t) <= inhib_r) &&
 (t[length] >= s[length])) *));
 }

protected void init()
 [Axiom ==> Stand;]

public void make()
 [
 Stand ==> for ((1 : n))
 ([Translate(random(0, x_extens), random(0, y_extens), 0)
 Seedling(random(10, 20))]);

 s:Seedling(h) ==> if (notOutcompeted(s) &&
 s[Location.X] >= 0 && s[Location.Y] >= 0 &&
 s[Location.X] <= x_extens && s[Location.Y] <= y_extens)
 (Tree(factor * h + normal(0, 15)))
 else ();
]

we can specify that the development of the seedling to
a mature tree (module “Tree”) will only take place if
there is no higher competitor inside a circle with radius
“inhib_r”. This results in an arrangement of mature
trees where positions are random, but no two trees are
closer than the minimal distance inhib_r. Furthermo-
re, the height of the resulting tree is linearly dependent
from that of the seedling, but with a random deviation
following a normal distribution with mean 0 and stan-
dard deviation 15. This dependency models in a simple
way the well-known phenomenon of rank preservation
(SLOBODA, 1983). “factor” is an empirical constant.
With the statement “else ();”, we ensure that out-
competed seedlings disappear.

lesnik2012_2.indd 80lesnik2012_2.indd 80 13.9.2012 3:10:0913.9.2012 3:10:09

Lesnícky časopis - Forestry Journal, 58(2): 75–91, Bratislava, 15. 9. 2012 81

Figure 3 shows a typical resulting pattern of seed-
lings (without minimal distance; upper part) and the cor-
responding pattern of mature trees after one additional
step of rule application (with minimal distance; lower
part). The complete XL code with 9 declarations and 3
rules is given in Table 1.

In Table 1, we see the organisation of rules in blocks
(delimited by pairs of brackets), here called “init” and
“make”, which makes the XL code more transparent.
All rules of a block which is declared as “public” are
automatically associated with an accessible button on
GroIMP’s RGG-execution panel, thus providing an in-
teractive selection of the group of rules which the user
wants to apply. The rules of the “init” block, which
is declared as “protected”, are, however, executed
automatically when GroIMP loads the RGG file. In this
case, there is only one “init” rule, which transforms
the start node “Axiom” into a “Stand” node.

Into the second rule of the “make” block, which
transforms the seedlings into trees, we have inserted
additional conditions to ensure that no tree grows bey-
ond the predefined limits of the stand. They just com-
pare the location coordinates of the seedlings with the
given threshold values.

A refinement of the model can be made by including
a tendency of clustering. Instead of spreading the seed-
lings directly at random, we can simulate a two-phase
stochastic process by first spreading clusters of seedlings:

Stand ==> for ((1:n))
([move to random position
Cluster(random(60, 120))]);

where the argument of the symbol “Cluster” speci-
fies the diameter of a cluster. Then each cluster is ex-

panded into a circular area where seedlings are distri-
buted with random polar coordinates:

Cluster(d) ==> for ((1 : sd_per_cl))
([RH(random(0, 360)) RU(90) M
(random(0, 0.5) * d)
RU(-90) Seedling(random(10, 30))]);

Here, “sd_per_cl” is the number of seedlings
per cluster, “RH(random(0,360))” denotes a ran-
dom rotation, and “M(random(0, 0.5)*d)” a ran-
dom movement in the interior of the circle with radius
d/2, where the start point is the centre of the cluster. The
turtle commands “RU” surrounding this movement com-
mand ensure that the randomized filling of the cluster
takes place in the horizontal plane. Of course, “Clus-
ter” must also be declared as a module; we define it
(for the purpose of visualisation) as a flat, yellow disk
which inherits its properties again from the standard
node type “F”:

module Cluster(super.diameter) extends
F(1, diameter, 14);

where 1 is the thickness of the disk and 14 a colour in-
dex, standing for “yellow”.

Figure 4 shows the resulting distribution of clusters
(second step; upper left part of the Figure), seedlings
(third step; upper right part) and mature trees (fourth
step; lower left part), all seen from above, and a view on
the mature trees, represented as cylinders, from an ob-
lique angle (lower right part). The stand area is model-
led as a flat, white box; seedlings dispersed outside this
area do not grow out to trees.

Similar to the previous example, the trees respect a
minimum distance, which is smaller than the cluster ra-

Fig. 4. Result of the growth grammar irreg2 (Table 2) after 2, 3 and 4 steps, seen from above, and after 4 steps from ob-

lique perspective

lesnik2012_2.indd 81lesnik2012_2.indd 81 13.9.2012 3:10:1013.9.2012 3:10:10

82 Lesnícky časopis - Forestry Journal, 58(2): 75–91, Bratislava, 15. 9. 2012

dius. Height and crown radius of the mature tree, which
are specified as parameters of the module Tree, will
now both depend on the height h of the seedling. The
complete grammar is shown in Table 2.

Instead of directly specifying the Tree object by a
turtle command F, it is also possible to give a more or

less complex rule which describes the topological and ge-
ometrical structure of a tree. The most simple variant is
to compose a few standard objects, e.g., a cylinder for the
stem and a cone for the crown (Figure 5a). To specify this
geometrical model, there is just one additional rule for the
module Tree to be inserted into the grammar of Table 2:

Table 2. The Relational Growth Grammar irreg2

/* Stand with randomly distributed clusters of trees,
 close neighbourship excluded */

module Stand;
module Cluster(super.diameter) extends F(1, diameter, 14);
module Seedling(super.length) extends F(length, 5, 4);
module Tree(super.length, super.diameter) extends F(length,
 diameter, 2);

int sd_per_cl = 20; /* number of seedlings per cluster */
int n = 8; /* number of clusters */
double x_extens = 500; /* extension of stand */
double y_extens = 350;
double inhib_r = 30; /* distance which inhibits growth */
double factor = 4; /* proportionality of seedling
 and tree height */

boolean notOutcompeted(Seedling s)
 {
 return empty((* t:Seedling,
 ((t != s) && (distance(s, t) <= inhib_r) &&
 (t[length] >= s[length])) *));
 }

protected void init()
 [
 Axiom ==>
 [Translate(x_extens/2, y_extens/2, -1)
 Box(1, x_extens, y_extens).(setColor(-1))] /* soil */
 Stand;
]

public void make()
 [
 Stand ==> for ((1 : n))
 ([Translate(random(0, x_extens), random(0, y_extens), 0)
 Cluster(random(60, 120))]);
 Cluster(d) ==> for ((1 : sd_per_cl))
 ([RH(random(0, 360)) RU(90) M(random(0, 0.5) * d) RU(-90)
 Seedling(random(10, 30))]);
 s:Seedling(h) ==> if (notOutcompeted(s) &&
 s[Location.X] >= 0 && s[Location.Y] >= 0 &&
 s[Location.X] <= x_extens && s[Location.Y] <= y_extens)
 ({double hnew = factor * h + normal(0, 20);}
 Tree(hnew, 0.4 * h))
 else ();
]

lesnik2012_2.indd 82lesnik2012_2.indd 82 13.9.2012 3:10:1013.9.2012 3:10:10

Lesnícky časopis - Forestry Journal, 58(2): 75–91, Bratislava, 15. 9. 2012 83

Tree(length, diameter) ==>
F(length, diameter,
2) Cone(length, length/3);

with F standing for the stem and Cone for the crown. In
order to reduce the necessary amount of computer me-
mory for all the tree compartments occurring in the sce-
ne, it is possible to use the technique of object instan-
cing here: The objects F and Cone will be generated
only once, and instances of them will be inserted into
the scene at the position of each Tree object only in
the moment when the output is generated (see DEUSSEN
et al. (1998) for a related application of object instan-
cing). For this purpose, the above rule for Tree has to
be substituted by an instantiation rule, which must be
specified in the XL code together with the declaration
of the module Tree:

module Tree(float length, float diameter) ==>
F(length, diameter,
2) Cone(length, length/3);

thus replacing the fourth module declaration in Table 2.
The visible result is the same as in Figure 5a.

It is also possible to use a more complex sub-gram-
mar (not shown; see KURTH (1999) for examples) which
captures the botanically-correct morphology of the bran-
ching structure of a certain tree species; we have tenta-
tively inserted a grammar for spruce (Figure 5b). Com-
bined with terrain data, textures and background ima-
ges, this approach can be used to generate photo-realis-
tic views of current or predicted forests and landscapes;
see KNAUFT (2000) for an earlier study in this direction,
using other tools.

4. Second Example: A Model of Crown Radius
Dynamics Under Competition
The previous models contained only a very coarse re-

presentation of interactions between neighbours. If more
detailed information about crown dimensions is availab-
le, a graph query can be used to simulate the reaction
of the crown radius to the presence of competitors. In
an ad-hoc model, i.e., without using a specification in

terms of a growth grammar or other higher-level langu-
age, this approach was used by PRETZSCH (1992a,b). He
described the dynamics of horizontal crown expansion,
using 8 predefined directions, in dependence upon dis-
tance to neighbouring trees. To formalize this approach,
we use a graph query which checks the distance to the
next geometrical element, representing a crown sector of
another tree, inside a 45° cone along the direction of the
considered crown radius. If this distance is large enou-
gh, i.e., above a given threshold ds, then the considered
crown radius continues to grow (parameter growing =
1, indicated also by a special colour c) and increases its
length to r+1:

s:Sector(growing, r, c) (* ms:Marker *) ==>
if (empty((* t:Sector mt:Marker,

(t != s && distance(ms, mt) <= ds &&
mt in cone(s, true, 22.5)) *)))

(Sector(1, r+1, 2))

otherwise, a status of “shrinking” (growing = 0, c = 4) is
assumed and the radius is shortened by 0.3 length units:

else (Sector(0, r-0.3, 4));

Here, the objects called “Marker” simply represent
the endpoints of the current crown radii. The XL function
“empty” checks if the set of solutions of the subsequ-
ent query, which is enclosed by (* ... *), is empty. It is
the first object inside the query, here: the Sector ob-
ject named t, which is looked for. This sector must ful-
fil three conditions in order to be accepted and to make
the “empty” condition false: (1) it must be different
from the crown sector s which is under consideration,
(2) the distance of its endpoint (represented by the di-
mensionless marker object mt) to the endpoint of s must
be smaller than the threshold ds, (3) its endpoint must
be situated inside a cone with its central axis given by
s and with an opening angle (measured from this axis)
of 22.5 degrees.

We can further make the assumption that the crown
radii in the status of “shrinking” are counted for each
tree, and if this number is 5 or greater, the tree is remo-

Fig. 5. (a) Result of an extended version of the grammar irreg2 (see Table 2) where tree architecture is specified by a sim-

ple geometrical rule (see text). (b) Result of a similar grammar with trees grown according to L-system rules for spruce from

KURTH (1999)

a) b)

lesnik2012_2.indd 83lesnik2012_2.indd 83 13.9.2012 3:10:1013.9.2012 3:10:10

84 Lesnícky časopis - Forestry Journal, 58(2): 75–91, Bratislava, 15. 9. 2012

Fig. 6. Results of the growth grammar radii 2011: (Table 3) after 3, 6 and 8 steps. In the rightmost part, several trees have

died because of too many shrinking radii due to competition, and other trees begin to invade the resulting gaps with their

crowns. Adapted from KURTH (2002)

Table 3. The Relational Growth Grammar radii

/* radii.rgg: specifi cation of a competition model based on
 relations between representative crown radii of each tree */

module Tree;
module Sector(int growing, super.length, super.color)
 extends F(length, 0.1, color);
module Marker extends Null;
module Counter(int n);

double dp = 12; /* distance between the planting positions */
double ds = 3; /* threshold distance for competition */
double ang = 22.5; /* opening angle of sensitive cone */

protected void init()
 [
 Axiom ==> for ((1:12))
 (
 [
 for ((1:15)) /* initial planting in rectangular array */
 ([Tree] RU(90) M(dp) RU(-90))
] RL(-90) M(dp) RL(90)
);
]

public void make()
 [
 Tree ==> Counter(0) RU(90) RL(random(0, 360)) for (int i:(1:8))
 ([RL(i*45) Sector(1, 1, 2) Marker]);
 (* x:Counter <-ancestor- *) s:Sector(g, r, c) (* ms:Marker *) ==>
 if (empty((* t:Sector mt:Marker, (t != s &&
 distance(ms, mt) <= ds && mt in cone(s, true, ang)) *)))
 (Sector(1, r+1, 2))
 else ({ x[n]++; } Sector(0, r-0.3, 4));
 Counter(n), (n >= 5) ==> cut;
]

ved because of deadly suppression by its competitors.
In the grammar, this mechanism is realized by an extra
object called Counter at the basis of each tree, coun-
ting the shrinking crown radii (i.e., with crown radius
status growing = 0) in a parameter n, and by a “cut ope-

rator” (“cut”) which switches off the turtle interpreta-
tion of subsequent objects (technically, by isolating them
from the rest of the graph). The counter at the basis of
the tree can be accessed in the graph representation from
each sector using the relation “<-ancestor-”, which

lesnik2012_2.indd 84lesnik2012_2.indd 84 13.9.2012 3:10:1113.9.2012 3:10:11

Lesnícky časopis - Forestry Journal, 58(2): 75–91, Bratislava, 15. 9. 2012 85

back traces the edges constituting the backbone of the
tree representation.

Table 3 shows the complete grammar, and Figure 6
shows its application to a rectangular, regularly-spaced
stand of 180 trees. Each tree is visibly represented by
its 8 crown radii. The shrinking radii are marked with
red colour.

Note that the only stochastic component in this mo-
del is the initial orientation of the “star” of 8 crown ra-
dii representing a tree. This is sufficient to generate ran-
dom gaps in the aged stand.

5. Third Example: A Model of Plant-Herbivore
Interaction

5.1. The Plant Submodel
The following example was inspired by a model con-

structed by BRECKLING (1990) (who did not use gram-
mars), and is explained in further detail by KURTH (2000a,
2002). Going further beyond the previous examples, we
now include the natural reproduction of plants by spre-
ading of seed. A plant is represented by the module
Plant and has two parameters, age t and size r. Size is
assumed to be proportional to carbon content or ener-
gy content of the plant. Geometrically, a plant of size
r is represented by a flat cylinder with radius r, giving
the image of a circle when viewed from above. We use
some heuristic rules for mortality. Our model does not
intend to represent a refined model of carbon metabo-
lism. The first rule is applied when the plant has rea-
ched a given maximal age, pmaxage:

Plant(t, r), (t > pmaxage) ==>;

The right-hand side of this rule is empty, i.e., the
plant disappears (mineralisation and nutrient cycle are
not repre sented in this model). The second rule has also
an empty r.h.s.:

Plant(t, r), (r < 0) ==>;

This means that the plant dies because of negative car-
bon budget. The third rule represents the effect of com-
petition. It searches for plants q in the neighbourhood
which are larger than the plant under consideration and
which cover its midpoint:

p:Plant, (* q:Plant *), (distance(p, q)
< q[radius]

&& p[radius] <= q[radius]) ==>;

We assume in this case, similar to the example ir-
reg above, that the smaller plant is outcompeted. This
model of competition for light is, of course, much sim-
pler than many approaches which are described in the li-
terature (e.g., PFREUNDT, SLOBODA, 1996). See KURTH, SLO-
BODA (1999b), HEMMERLING et al. (2008) for grammar re-
presentations of more detailed light competition models.

If none of the rules for mortality is applicable, the
plant grows, and its age is increased by one:

Plant(t, r) ==> Plant(t+1, r+pgrow);

The amount of growth, pgrow, is a constant. Final-
ly, there is a rule for reproduction. It is activated if one
of two fixed (arbitrary) age stages is reached and if in
the same time r is above a given threshold. This condi-
tion uses, besides && (and), the logical operator || (or).

Plant(t, r), ((t == pgenage1 ||
t == pgenage2) &&

r >= pminrad) ==>
for ((1 : (int) (pgenfac*r)))

([RH(random(0, 360)) RU(90)
M(random(distmin, distmax)) RU(-90)
Plant(0, seed_rad)])

Plant(t+1, r);

In the header of the loop, marked by the keyword
“for”, it is specified how many seeds are dispersed.
Their number is proportional to the radius r of the
plant. Spreading of seeds (which are simply represen-
ted by Plant(0, seed_rad)) is done in a similar

Fig. 7. Summary of the behaviour of plants in the “phytophag” grammar (see text)

lesnik2012_2.indd 85lesnik2012_2.indd 85 13.9.2012 3:10:1213.9.2012 3:10:12

86 Lesnícky časopis - Forestry Journal, 58(2): 75–91, Bratislava, 15. 9. 2012

Fig. 8. Stand without herbivores after 80 steps of develop-

ment, resulting from the plant grammar described in the text.

Interaction between plants happens by the “competition” rule

way than in the example “irreg2” above. The distance
from the mother tree is selected randomly between the
limits distmin and distmax. The mother plant ages
during this step, but does not grow (Plant(t+1, r)).
In order to have higher priority than the rule for ordinary
growth, the reproduction rule has to be inserted before
that rule. In Figure 7, the key rules, that for growth and
reproduction (upper part of picture) and that for compe-
tition (lower part), are visually summarized.

Already with this simple grammar, consisting of 5
rules, a richness of spatial patterns emerges. We obtain
clusters of smaller plants and larger gaps which are later
again invaded by plants. Figure 8 shows, as an example, a
stand which has evolved since 80 time steps from a single
plant which was located near the centre of the picture.

5.2. The Herbivore Submodel
We will now add further rules to represent herbivores

which take their energy for living from the plants. Such
a herbivore is symbolized in the grammar by Animal
(t, e), where t is age and e the size. e is assumed to
be proportional to the reserve of carbon or energy. The
herbivores are represented graphically by small circles
with a colour different from that of the plants. To have
a simple reproduction rule, we assume that the herbivo-
res reproduce by division. In the real world, we can think
of numerous microorganisms (e.g. bacteria, fungi) beha-
ving this way. This time, there is only one mortality rule:

Animal(t, e), (e <= 0) ==>;

(again, the right side is empty; organic matter from the
dead herbivore is not fed back into the system.) In con-
trast to the plants, the herbivores are mobile; they per-

form a random walk which is influenced only by the pre-
sence of plants. If a herbivore is not in contact with a
plant, it is in a “search” status and makes long steps (dis-
tance “longstep”), causing a loss of energy (“res-
pi”):

Animal(t, e) ==> RH(random(0, 360)) RU(90)
M(longstep) RU(-90) Animal(t+1,
e – f_e*respi);

Here, f_e is a fixed proportionality factor between
the energy of a herbivore and its radius. Preceding this
rule, we specify a rule which is applied when the her-
bivore has come into contact with a plant. This condi-
tion is checked using a graph query looking for a plant
p with a distance smaller than the radius of p:

a:Animal(t, e), (* p:Plant(u, r) *),
(distance(a, p) < p[radius]) ==>

RH(random(0, 360)) RU(90)
M(shortstep) RU(-90)
Animal(t+1, e + f_e*eat – f_e*respi)
{ p[radius] :-= eat; };

Here, the step of movement (shortstep) is shorter
than in the case of search for food. The energy budget
of the herbivore is diminished by “respi” and increa-
sed by an amount “eat” which is taken from the plant.
The reduction of the energy (and, at the same time, of
the radius) of the plant is modelled using an imperati-
ve statement, enclosed in braces { ... }. The colon-led
assignment operator “:-=” ensures a delayed execu-
tion, i.e., the update of the energy budgets of the plants
is executed after all possible herbivore-plant interacti-
ons are checked. (Otherwise, the outcome of a simula-
tion could depend on the order in which the herbivores
are visited during rule application.) We could interpret
this “grazing” interaction as a sort of communication
between two objects. Reproduction takes place when a
herbivore is large enough, i.e., has more energy than a
threshold thr:

Animal(t, e), (e > f_e*thr) ==>
[RH(random(0, 360)) RU(90)
M(shortstep) RU(-90)
Animal(0, e/2 – f_e*respi)]
RH(random(0, 360)) RU(90)
M(shortstep) RU(-90)
Animal(0, e/2 – f_e*respi);

Both offspring move away in random directions and
get e/2, half of the energy content of the parent, dimin-
ished by respiration. Figure 9 summarizes the herbivore
rules.

Only a start rule, a rule for delaying the appearance
of the herbivores in the beginning, and some declarati-
ons of parameters have to be added to the given rules to
complete the relational growth grammar phytophag,
documented in Table 4. In order to have a more transpa-

lesnik2012_2.indd 86lesnik2012_2.indd 86 13.9.2012 3:10:1213.9.2012 3:10:12

Lesnícky časopis - Forestry Journal, 58(2): 75–91, Bratislava, 15. 9. 2012 87

rent code, the rules for plants and those for herbivores
are separated in different blocks, “growPlants” and
“growAnimals”, using the possibility given in XL to
organize the execution of rules with control structures

Fig. 9. Summary of the behaviour of herbivores in the “phy-

tophag” grammar (see text)

Fig. 10. Results of the grammar phytophag (described in the text) after 125 time steps. Both simulation runs started with

one plant and one herbivore and differ in the parameterization. Wheel-like objects: plants, small points: herbivores

Fig. 11. Development of the numbers of individuals (smooth, dark line: herbivores, grey line: plants) in two simulation runs

with the growth grammar phytophag, differing in their parameterization

and method calls as common in Java. Figure 10 shows
two possible results of simulation runs after 125 steps,
obtained with different parameterizations. Both simula-
tion runs started with one plant and one herbivore. We
see that complex spatial patterns can emerge. The dy-
namics in time does also depend on the choice of para-
meters. Figure 11 shows two examples: In the simula-
tion run depicted on the left-hand side, the system col-
lapses, i.e., the plants (and later, inevitably, also the her-
bivores) die out because of too much grazing. In the run
depicted on the right-hand side, the plant population re-
covers after a while, and there is a long-term oscillation,
as observed, e.g., in many real predator-prey systems.

6. Simulation of Evolving Strategies
of Behaviour
The RGG rules offer the possibility to transmit ge-

netic information concerning morphology and behavio-
ur to the offspring. We demonstrate this at the example
of the herbivores from the above model phytophag.
We extend the Animal module by a third parameter w
which represents the step width which is used for mo-

lesnik2012_2.indd 87lesnik2012_2.indd 87 13.9.2012 3:10:1213.9.2012 3:10:12

88 Lesnícky časopis - Forestry Journal, 58(2): 75–91, Bratislava, 15. 9. 2012

Table 4. The Relational Growth Grammar phytophag

/* phytophag.rgg: specifi cation of a grazing and competition model
 with circular-shaped plants and herbivores */

module Plant(int t, super.radius) extends Cylinder(1, radius)
 {{setColor(0x00aa00);}}
module Animal(int t, super.radius) extends Cylinder(2, radius)
 {{setColor(0xff0000); setBaseOpen(true); setTopOpen(true);}};

double pgrow = 0.9; /* regular growth increment per timestep */
double seed_rad = 0.1;/* initial radius of a plant */
int pmaxage = 30; /* maximal age of a plant */
int pgenage1 = 10; /* fi rst reproductive age level */
int pgenage2 = 18; /* second reproductive age level */
double distmin = 15; /* minimal seed distance */
double distmax = 40; /* maximal seed distance */
double pminrad = 9; /* necessary plant radius for reproduction */
double pgenfac = 0.5; /* ratio #seeds/radius */

int lag = 15; /* sleeping time for herbivore at start */
double shortstep = 0.4;/* movement of herbivores inside plant canopy */
double longstep = 15; /* movement of herbivores outside */
double f_e = 0.2; /* ratio radius / energy of herbivores */
double init_e = 4; /* initial energy amount of herbivores */
double respi = 0.25; /* energy cosumed by herbivores‘ respiration */
double thr = 7.6; /* energy threshold for reproduction of herbivores */
double eat = 1.1; /* energy transferred during grazing */

protected void init()
 [
 Axiom ==> Plant(0, seed_rad) [RH(random(0, 360))
 RU(90) M(10) RU(-90) Animal(-lag, f_e*init_e)];
]

public void make()
 { growAnimals(); derive(); growPlants(); }

public void growAnimals()
 [
 Animal(t, e), (t < 0) ==> Animal(t+1, e); /* start lag */
 Animal(t, e), (e <= 0) ==> ;
 Animal(t, e), (e > f_e*thr) ==>
 [RH(random(0, 360)) RU(90) M(shortstep) RU(-90)
 Animal(0, e/2 - f_e*respi)]
 RH(random(0, 360)) RU(90) M(shortstep) RU(-90)
 Animal(0, e/2 - f_e*respi);
 a:Animal(t, e), (* p:Plant(u, r) *),
 (distance(a, p) < p[radius]) ==>
 RH(random(0, 360)) RU(90) M(shortstep) RU(-90)
 Animal(t+1, e + f_e*eat - f_e*respi) { p[radius] :-= eat; };

 Animal(t, e) ==>
 RH(random(0, 360)) RU(90) M(longstep) RU(-90)
 Animal(t+1, e - f_e*respi);
]

public void growPlants()
 [
 Plant(t, r), (t > pmaxage) ==> ;
 Plant(t, r), (r < 0) ==> ;
 p:Plant, (* q:Plant *), (distance(p, q) < q[radius]
 && p[radius] <= q[radius]) ==> ;
 Plant(t, r), ((t == pgenage1 || t == pgenage2) && r >= pminrad)
 ==> for ((1 : (int) (pgenfac*r)))
 ([RH(random(0, 360)) RU(90) M(random(distmin, distmax))
 RU(-90) Plant(0, seed_rad)])
 Plant(t+1, r);
 Plant(t, r) ==> Plant(t+1, r+pgrow);
]

lesnik2012_2.indd 88lesnik2012_2.indd 88 13.9.2012 3:10:1313.9.2012 3:10:13

Lesnícky časopis - Forestry Journal, 58(2): 75–91, Bratislava, 15. 9. 2012 89

vements in the “search” mode (i.e., without contact to
a plant). In the corresponding rule for movement, the
constant longstep is thus replaced by this individual
parameter w. We can interpret this parameter as a sim-
ple description of a strategy for foraging. In the rule for
the reproduction of the herbivores, the value w is inhe-
rited by the offspring, but with a small random devia-
tion (mutation), which we chose between –2 and 2 len-
gth units. In order to inhibit negative values, the resul-
ting new value is compared with 0, and the maximum of
both numbers is taken (using the standard Java function
Math.max). The expression for the new value of para-
meter w for all offspring produced in the reproduction
rule for herbivores is thus

Math.max(0, w + random(-2, 2))

In several simulation runs, this modification has led to
a larger number of herbivores after 200 steps, compared
with the model without mutation of step width. Further-
more, after this number of steps a significant shift of the
value of parameter w from the initial value of 15 towar-
ds larger values can be observed (Figure 12). These are
only preliminary results, but they demonstrate that it is
relatively straightforward to simulate mechanisms of
evolution by RGGs. In this connection it is worth to no-
tice that in this example no fitness function was expli-
citly given. The fitness (chance for reproduction) of an
individual results from the interaction with the simula-
ted plants. In an extension of the model, a coevolution
of plants and herbivores would be possible: To this pur-
pose, the plants, too, would have to be equipped with ge-
netic information and exposed to mutation.

Fig. 12. Histogramme of the step lengths (mutated parame-

ter w) in the herbivore population after 200 time steps, resul-

ting from a simulation run of the grammar phytophag, exten-

ded by a random mutation of w in the reproduction rule (see

text). The arrow marks the start value 15. The trend towards

values larger than 15 is highly significant (t-test)

7. Discussion
Further studies will be necessary to systematically

explore the parameter spaces, i.e., the sets of all possib-
le combinations of adjustable parameters of the presen-
ted models. This was not the aim here. Instead, it was
intended to demonstrate the descriptive power of Rela-
tional Growth Grammars for the specification of vario-
us types of stand models – from simple descriptions of
spatial patterns to population dynamics. Several advan-
tages of the approach are obvious:

All results were obtained with one and the same soft-
ware tool (GroIMP, see www.grogra.de, KNIEMEYER,
2008) which had not to be recompiled for the different
grammars. The grammars, which specify the essential
features of the models including parameterization, are
easy to manipulate.

To a certain degree, the rules are intuitively compre-
hensible and describe directly the behaviour of plants
and herbivores (growth, reproduction, seed dispersal).

Not only the global behaviour of the simulated stand,
but also “local histories” of certain trees or regions in
the model plane can be investigated. Thus, comparisons
with intensively-monitored research plots in real forests
are possible. Furthermore, individual treatment of hi-
ghly-valued trees can be simulated.

The appearance of singularities (catastrophes), e.g.,
breakdown of a stand from herbivore attack, can be stu-
died in detail (cf. BRECKLING, 1990).

The universality of the approach is made plausib-
le by the successful reimplementation of plant models
from the literature which were originally not specified
in terms of grammars and which can now all be studied
using the same formal framework and software shell (cf.
KURTH, 2000b).

Our example models belong to the class of individu-
al-based models (IBMs). An overview about IBMs is gi-
ven by THIELE et al. (2011), and their usage in ecology is
extensively covered by DEANGELIS, GROSS (1992), GRIMM,
RAILSBACK (2005), and RAILSBACK, GRIMM (2011). In re-
cent years, several generic software systems for IBMs
have been developed and used, e.g., Repast (NORTH et al.,
2007), MASON (LUKE et al., 2005), and NetLogo (WI-
LENSKY, RAND, in press). These systems and their corres-
ponding model specification languages are adapted to
handle the processes and behavioral properties, but they
are not particularly well-suited for structural (architec-
tural) properties of individuals. The latter are, however,
especially important for trees and their interaction (BOR-
MANN, LIKENS, 1979). GroIMP and the language XL al-
low to combine individual-based modelling at the po-
pulation scale with functional-structural modelling of
the single tree (HEMMERLING et al., 2008). Furthermore,
XL is distinguished by enabling the inclusion of L-sys-
tems, which have been widely used for structural plant
models (cf. PRUSINKIEWICZ et al., 1997).

lesnik2012_2.indd 89lesnik2012_2.indd 89 13.9.2012 3:10:1313.9.2012 3:10:13

90 Lesnícky časopis - Forestry Journal, 58(2): 75–91, Bratislava, 15. 9. 2012

The models which we have shown here have already
been realised in L-system form in previous work (see the
conference proceedings papers KURTH, SLOBODA, 2001
and KURTH, 2002), using the software Grogra (Growth
grammar interpreter; KURTH, 1994). However, Grogra
permits no general formalism of graph queries such as
those possible in XL. Therefore, “sensitive functions”
had to be used which were implemented in the Grogra
source code and could not be modified in the grammars.
Thus, the realisation in XL makes the models much more
transparent and flexible. Furthermore, the fact that XL
is an extension of Java makes it much easier to include
procedurally-specified code, e.g., for process-based sub-
models, in a grammar-based structural model (c.f. HEM-
MERLING et al., 2008).

Some extensions of the plant-herbivore model can
easily be imagined:
– the inclusion of several trophic levels (predators),
– more refined rules for foraging and reproduction of

herbivores,
– more detailed growth and competition models for the

trees,
– a more detailed and realistic model of plant architec-

ture, which can easily be realized with GroIMP – cf.
the mixed-stand model presented in HEMMERLING et
al. (2008), where coniferous and decidious trees com-
pete for light,

– transmission of more complex genetic information
in the reproduction rules,

– the inclusion of more realistic models of mutation,
and also of recombination, which have already been
realised in other RGG-based models of organisms
(KNIEMEYER et al., 2004; BUCK-SORLIN et al., 2005).
But already in its current form, the implementation

of the model in the language XL shows the appropria-
teness of this high-level language for a quite intuitive
and transparent representation of mechanisms of com-
petition, communication and foraging in ecological sys-
tems, particularly in forests.

Acknowledgements
The authors wish to thank Gerhard Buck-Sorlin, Helge Dzier-

zon, Broder Breckling, Marek Fabrika, Hans Pretzsch and Martin

Schön for fruitful discussions and inspiration, and Katarína Smo-

leňová also for translation. Funding was obtained from BMBF and

DFG. All support is gratefully acknowledged.

References
ABELSON H., DISESSA A.A., 1982: Turtle Geometry. Cambridge, MIT

Press: 512 p.

ACOCK B., REYNOLDS J.F., 1997: Introduction: Modularity in plant

models. Ecological Modelling, 94: 1-6.

BORMANN F.H., LIKENS G.E., 1979: Pattern and Process in Forested

Ecosystems. New York, Springer: 253 p.

BRECKLING B., 1990: Singularität und Reproduzierbarkeit in der Mo-

dellierung ökologischer Systeme. Dissertation, University of

Bremen, FB2: 401 p.

BRECKLING B., 1996: An individual based model for the study of

pattern and process in plant ecology: An application of object

oriented programming. EcoSys, 4: 241-254.

BUCK-SORLIN G.H., KNIEMEYER O., KURTH W., 2005: Barley morphol-

ogy, genetics and hormonal regulation of internode elongation

modelled by a Relational Growth Grammar. New Phytologist,

166(3): 859-867.

DEANGELIS D.L., GROSS L.J. (eds.), 1992: Individual-based Models

and Approaches in Ecology: Populations, Communities and

Ecosystems. New York, Chapman & Hall: 525 p.

DEUSSEN O., HANRAHAN P., LINTERMANN B., MĕCH R., PHARR M.,

PRUSINKIEWICZ P., 1998: Realistic modeling and rendering of

plant ecosystems. SIGGRAPH 98 (Orlando, Fl., July 19–24,

1998), Computer Graphics Proceedings, Annual Conference

Series, 1998: 275-286.

ERMENTROUT G.B., EDELSTEIN-KESHET L., 1993. Cellular automata

approaches to biological modelling. Journal of Theoretical

Biology, 160: 97-133.

GOSLING J., JOY B., STEELE G., BRACHNA G., 2005: The Java Lan-

guage Specification. Third Edition. Reading, Addison-Wesley:

649 p. http://java.sun.com/docs/books/jls/ (last access: January

19, 2012).

GRIMM V., RAILSBACK S.F., 2005: Individual-based Modeling and

Ecology. Princeton, N.J., Princeton University Press: 428 p.

HEMMERLING R., KNIEMEYER O., LANWERT D., KURTH W., BUCK-SORLIN

G., 2008: The rule-based language XL and the modelling environ-

ment GroIMP illustrated with simulated tree competition. Functi-

onal Plant Biology, 35: 739-750.

KNAUFT F.J., 2000: Entwicklung von Methoden zur GIS-gestützten

Visualisierung von Wald entwicklungsszenarien. Ph.D. thesis,

University of Göttingen, Faculty of Forest Sciences and Forest

Ecology: 127 p., http://webdoc.sub.gwdg.de/diss/2000/knauft/

inhalt.htm.

KNIEMEYER O., 2008: Design and Implementation of a Graph Gram-

mar Based Language for Functional-structural Plant Modelling.

Ph.D. thesis, University of Cottbus: 432 p., http://nbn-resolving.

de/urn/resolver.pl?urn=urn:nbn:de: kobv:co1-opus-5937.

KNIEMEYER O., BUCK-SORLIN G.H., KURTH W., 2004: A graph gram-

mar approach to Artificial Life. Artificial Life, 10 (4): 413-431.

KNIEMEYER O., BUCK-SORLIN G.H., KURTH W., 2007: GroIMP as a

platform for functional-structural modelling of plants. In: VOS

J., MARCELIS L.F.M., DEVISSER P.H.B., STRUIK P.C., EVERS J.B.

(eds.): Functional-Structural Plant Modelling in Crop Production.

Dordrecht, Springer: 43-52.

KURTH W., 1994: Growth Grammar Interpreter GROGRA 2.4. Be-

richte des Forschungs zentrums Waldökosysteme der Universi-

tät Göttingen, Ser. B, 38: 192 p.

KURTH W., 1999: Die Simulation der Baumarchitektur mit Wachstums-

grammatiken. Berlin, Wissenschaftlicher Verlag Berlin: 327 p.

KURTH W., SLOBODA B., 1999a: Tree and stand architecture described

by formal grammars. I. Non-sensitive trees. J. Forest Sci., 45:

16-30.

KURTH W., SLOBODA B., 1999b: Tree and stand architecture described

by formal grammars. II. Sensitive trees and competition. J. Forest

Sci., 45: 53-63.

KURTH W., 2000a: Spezifikation räumlicher Bestandes- und Popu-

lationsmodelle mit sensitiven Grammatiken. In: SABOROWSKI J.,

SLOBODA B. (eds.): DVFFA Sektion Forstliche Biometrie u. In-

formatik, 12. Tagung 1999. Ljubljana, Biotechn. Fak.: 259-278.

KURTH W., 2000b: Towards universality of growth grammars: Mod-

els of Bell, Pagès, and Takenaka revisited. Ann. For. Sci., 57:

543-554.

KURTH W., 2002: Spezifikation der Simulation der Struktur und Dy-

namik von Pflanzenbeständen und Tierpopulationen mit sen-

lesnik2012_2.indd 90lesnik2012_2.indd 90 13.9.2012 3:10:1313.9.2012 3:10:13

Lesnícky časopis - Forestry Journal, 58(2): 75–91, Bratislava, 15. 9. 2012 91

sitiven Wachstumsgrammatiken. In: WITTMANN J., GNAUCK A.

(ed.): Simulation in Umwelt- und Geowissenschaften. Workshop

Cottbus, 7.-8. 3. 2002. Aachen, Shaker: 37-51.

KURTH W., 2007: Specification of morphological models with L-

systems and Relational Growth Grammars. Image – Journal of

Interdisciplinary Image Science, 5 / Special Issue.

KURTH W., KNIEMEYER O., BUCK-SORLIN G.: Relational Growth Gram-

mars – a graph rewriting approach to dynamical systems with a

dynamical structure. In: BANÂTRE J.-P., FRADET P., GIAVITTO J.-L.,

MICHEL O. (eds.): Unconventional Programming Paradigms. Lec-

ture Notes in Computer Science, 3566, Berlin, Springer: 56-72.

KURTH W., LANWERT D., 2011: Grammar-based models and fractals.

In: JOPP F., REUTER H., BRECKLING B. (eds.): Modelling Complex

Ecological Dynamics. Berlin, Springer: 147-161.

KURTH W., SLOBODA B., 2011: Sensitive growth grammars specify-

ing models of forest structure, competition and plant-herbivore

interaction. In: RENNOLLS K. (ed.): Pro ceedings of the IUFRO

4.11 Congress “Forest Biometry, Modelling and Information

Science”, Greenwich, UK (25.–29. 6. 2001), online publication,

http://www.uni-forst.gwdg.de/~wkurth/cb/html/gree_tx.pdf (last

access: May 6, 2012).

LEWANDOWSKI A., VON GADOW K., 1997: Ein heuristischer Ansatz zur

Reproduktion von Wald beständen. Allg. Forst- u. Jagdzeitg.,

168: 170-174.

LINDENMAYER A., 1968: Mathematical models for cellular interactions

in development. Journal of Theoretical Biology, 18: 280-299,

300-315.

LUKE S., CIOFFI-REVILLA C., PANAIT L., SULLIVAN K., BALAN G., 2005:

MASON: A multi-agent simulation environment. Simulation,

82: 517-527.

NORTH M.J., TATARA E., COLLIER N.T., OZIK J., 2007: Visual agent-

based model development with Repast Simphony. In: Agent 2007

Conference: Complex Interaction and Social Emergence, 15-17

Nov. 2007, Evanston, IL: 173-192.

PENTTINEN A., STOYAN D., HENTTONEN H.M., 1994: Marked point

processes in forest statistics. For. Sci., 38: 806-824.

PFREUNDT J., SLOBODA B., 1996: The relation of local stand structure

to photosynthetic capacity in a spruce stand: A model calculation.

Lesnictví / Forestry, 42: 149-160.

PRETZSCH H., 1992a: Kronenformen und ihre Veränderung unter Kon-

kurrenz. In: Jahrestagung 1992 d. Sekt. Ertragskunde des Dt. Vb.

Forstl. Forschungsanstalten, Grillenburg: 40-61.

PRETZSCH H., 1992b. Modellierung der Kronenkonkurrenz von Fich-

te und Buche in Rein- und Mischbeständen. Allg. Forst- u. Jag-

dzeitg., 163: 203–213.

PRETZSCH H., 2001: Modellierung des Waldwachstums. Berlin, Pa-

rey: 341 p.

PRETZSCH H., 2009: Forest Dynamics, Growth and Yield. Berlin,

Springer: 664 p.

PRUSINKIEWICZ P., LINDENMAYER A., 1990: The Algorithmic Beauty

of Plants. New York, Springer: 228 p.

PRUSINKIEWICZ P., HAMMEL M., HANAN J., MĚCH R., 1997: Visual

models of plant development. In: ROZENBERG G., SALOMAA A.

(eds.): Handbook of Formal Languages. Vol. 3: Beyond Words.

Berlin, Springer: 535-597.

RAILSBACK S.F., GRIMM V., 2011: Agent-Based and Individual-Based

Modeling: A Practical Introduction. Princeton, Princeton Uni-

versity Press: 352 p.

SLOBODA B., 1983. Möglichkeiten der mathematischen Vorhersage der

Holzproduktion im Wirtschaftswald. Forstarchiv, 54: 134–142.

THIELE J.C., KURTH W., GRIMM V., 2011: Agent- and individual-based

modeling with NetLogo: Introduction and new NetLogo exten-

sions. In: RÖMISCH K., NOTHDURFT A., WUNN, U. (eds.): Die Grü-

ne Reihe 22. Tagung der Sektion Forstliche Biometrie und Infor-

matik des Deutschen Verbandes Forstlicher Forschungsanstalten

und der Arbeits gemeinschaft Ökologie und Umwelt der Interna-

tionalen Biometrischen Gesellschaft – Deutsche Region, 20-21

September 2010 in Göttingen (Germany): 68-101.

WILENSKY U., RAND W., (in press): An Introduction to Agent-Based

Modeling: Modeling Natural, Social and Engineered Complex

Systems with NetLogo. Cambridge, MIT Press.

lesnik2012_2.indd 91lesnik2012_2.indd 91 13.9.2012 3:10:1313.9.2012 3:10:13

